
Introduction to ELisp
and also random Emacs stuff

j4nk *

September 22, 2022



About Emacs

▶ “Eight megabytes and constantly swapping”

▶ “Editor MACroS”
▶ Family of “text editors”

▶ Most famous implementation is GNU Emacs
▶ Second most famous is XEmacs (“modern” fork from GNU

Emacs in the 90s)
▶ Beware of “Ersatz Emacs”

▶ Nowadays, an ELisp runtime that just happens to have
text-editing functionalities



Why not Emacs?

▶ Objection 1: Emacs is bloat
▶ Not if you consider that Emacs is not a text editor, but rather

an Emacs Lisp runtime

▶ Objection 2: Emacs doesn’t follow the UNIX philosophy
▶ See answer to objection 1

▶ Objection 3: Emacs can not be run in systems with limited
resources, unlike vi/vim
▶ Use TRAMP to edit over SSH/telnet/ftp/other protocols

▶ Objection 4: Emacs pinkie
▶ Rebind capslock to ctrl, or even better use foot pedals for ctrl

and alt

▶ Objection 5: Emacs is slow, runs in single thread
▶ Emacs allows compiling scripts to a binary form which speeds

up execution, groundwork for a parallelized Emacs was laid in
a recent version of Emacs



Why Emacs?

▶ Extremely low barrier to entry

▶ Running composable functions inside a common ELisp runtime
is theoretically faster than composing programs in a shell

▶ ELisp is very easy to learn and understand

▶ ELisp scripts downloaded elsewhere are really easy to edit,
provided they aren’t compiled to binary form

▶ Help system is very good

▶ Macros help speed up development immensely

▶ Emacs daemon allows consistent editing experience
throughout a network

▶ Entire configuration fits in a .emacs file and .emacs.d directory



Common Emacs notation
▶ Keyboard combinations

▶ C - ctrl
▶ M - alt (meta)
▶ RET - enter/return
▶ e.g. M-x = alt+x
▶ e.g. C-x C-s = ctrl+x, followed by ctrl+s

▶ GUI



Emacs as a ELisp runtime environment

▶ All editing components are just ELisp functions (AKA
lambdas)

▶ Emacs is just a bunch of ELisp lambdas bound to certain key
combinations

▶ ELisp is capable of anything, not just editing

(defun factorial (n)

(if (equal n 1)

1

(* n (factorial (- n 1)))))



Introduction to ELisp

▶ ELisp is an approximation of a functional programming
language
▶ Oriented around functions, not objects
▶ A program is a composition of functions, rather than a

sequence of instructions
▶ Unlike pure functional programming languages, ELisp allows its

functions to have side-effects

▶ Standard data types: bool, int, double, string, etc.
▶ Only important for debugging, ELisp is weakly typed
▶ nil is a special datatype, denotes end of list and causes errors

when dereferenced

▶ One important data structure: the list



Writing ELisp code

▶ File extension for ELisp script is .el

▶ File extension for Elisp compiled code is .elc
▶ *scratch* buffer present at Emacs startup is automatically in

ELisp mode, write temporary code there and use C-x C-e to
execute code
▶ Note that you can write ELisp code in any buffer, execute it,

then delete it
▶ Buffers in ELisp mode give you prettifying functions, syntax

highlighting and best practices tips

▶ Put defuns directly in .emacs

▶ Put defuns in a .el file and put (load file.el) in .emacs

▶ Package them and use (use-package)



Functions in ELisp

▶ Calling a function: (FX_NAME arg1 arg2 ... argN)

▶ Functions are composable: (* 5 (+ 1 2))

▶ Use defun to declare a function with global scope

▶ Use cl-labels to declare functions with local scope (to not
clutter the global scope)

▶ No iterative functions, only recursive

▶ Return value of a function is the return value of the last item
in the BODY list



Types of functions

▶ Noninteractive functions
▶ Functions that are designed to not be directly called by the

user
▶ Usually called by interactive functions
▶ Can be called directly with M-:

▶ Interactive functions
▶ Functions designed to be called by the user
▶ Run with M-x FX-NAME RET
▶ Have (interactive) as the first instruction in the defun
▶ interactive has optional argument format string, examples

present in help page for interactive (C-h f interactive RET)



Lists in ELisp

▶ A list is a linked list of “cons”-es
▶ A “cons” consists of a “car” and “cdr”

▶ car - First item in a list
▶ cdr - Rest of the items in a list

▶ Last item in a list is the cons with a cdr of nil

▶ The car of a list is, itself, allowed to be a list (i.e. a list of
lists)

▶ Can treat a list as a set, run (delete-dups list)

beforehand



Iterations in ELisp

▶ There are no “iterative” functions in ELisp, only recursive
▶ Macros exist for convenience, but they expand to recursions

▶ (dotimes (idx times)BODY...)
▶ (dolist (item list)BODY...)

(defun recursion_through_loop_function (the_list)

(if (not (car the_list))

base_case

do something with car the_list, combine with (

recursion_through_loop_function (cdr the_list)))



Inserting/removing text

▶ (insert TEXT) - insert text into current buffer

▶ (kill-whole-line) - delete the current line

▶ (delete-char) - delete the character at point

▶ (insert-file-contents filename) - insert contents of
filename into current buffer

▶ (with-temp-buffer inst1, ..., instN) - Spawn a
temporary buffer invisible to the user, set it as the current
buffer, execute inst1, ..., instN, and delete the buffer
afterwards



Navigating a buffer

▶ (point-{min,max}) - beginning/end of buffer

▶ (line-{beginning,end}-position) - beginning/end of line

▶ (goto-char pos) - sets point to pos

▶ (forward-line n) - go forward n lines, or backward n lines
if n is negative

▶ (re-search-{forward,backward} regexp end-pos) -
Updates some internal variable with position of all matches to
regexp going forward/backward from point, will not search
beyond end-pos; nil if no match found
▶ Access matched positions with (match-beginning 0),

(match-beginning 1), ...



String operations

▶ Note: Emacs is optimized to work on buffers, not strings

▶ (split-string TEXT) - split text into a list of strings, with
whitespace delimiter, can change delimiter with additional
argument

▶ (string-replace text rep str) - replace occurrences of
text in str with rep

▶ (replace-regexp-in-string regexp rep str) - replace
all substrings of str matching regexp with rep

▶ (buffer-substring-no-properties begin_pos end_pos

) - Returns the text in between begin pos and end pos in the
current buffer as a string, discarding properties

▶ (concat str1 ...) - Concatenates str1...strN to one string



Example 1: C header guard generator

(defun insert−c−header−guard()
(interactive)
(if buffer−file−name

(let ((fmt−file−name (replace−regexp−in−string ”\\.” ” ” (upcase (file−name−nondirectory (buffer
−file−name))))))
(insert (concat ”#ifndef ” fmt−file−name ”\n”))
(insert (concat ”#define ” fmt−file−name ”\n\n\n\n”))
(insert (concat ”#endif ”))
(forward−line −2))))



Example 2: Insert code for LaTeX sections

(defun lhw-sections (numSections)

(interactive "nNumber of sections: ")

(dotimes (i numSections)

(insert (concat "\\section{Question " (number-to-

string (+ i 1)) "}\n"))

)

)



Example 3: Convert a list to a string with a separator,
except last element

(defun ef−list−to−string−with−separator (list string separator)
”Accumulate LIST as a STRING separated by SEPARATOR except the last element.”
(if list

(if (eq (length list) 1) ;; last element, don’t include separator
(concat string (ef−remove−delimiter−for−special−state (car list)) (ef−list−to−string−with

−separator (cdr list) string separator))
(concat string (ef−remove−delimiter−for−special−state (car list)) separator (ef−list−to−string

−with−separator (cdr list) string separator))) ;; otherwise include separator
(concat string ””))) ;; list is nil, return string concat with empty string



Example 4: Return a list of every other element from list

;; note: even elements are (ef−every−other−element−from−list list)
;; while odd elements are (ef−every−other−element−from−list (cdr list))
(defun ef−every−other−element−from−list (list)
”Return a list consisting of even elements of LIST.”
(if list

(cons (car list) (ef−every−other−element−from−list (nthcdr 2 list)))
)

)



Useful resources for Emacs

▶ FAQ - C-h C-f

▶ Interactive tutorial - C-h t

▶ Someone’s guide on Emacs ricing -
https://github.com/AbdeltwabMF/emacs-for-dev (my current
.emacs is based heavily off of this)

▶ Flycheck - de facto official linter frontend

▶ Company mode - de facto official autocompleter

▶ Corfu mode - Minimal, and much more tightly integrated with
Emacs competitor to Company

▶ VHDL mode - widely considered to be the best way to write
VHDL

▶ HOL mode - widely considered to be the best way to write
HOL

▶ Org mode - Emacs evangelists shill this as the ultimate
note-taker



Useful resources for ELisp

▶ Built-in help: C-h f fun opens the help file for function fun

▶ EmacsWiki - poorly organized, but a pretty authoritative
source outside of built-in help

▶ eintr.pdf - the main resource I used for learning ELisp,
available at
https://www.gnu.org/software/emacs/manual/pdf/eintr.pdf

▶ Xah Lee’s website - well organized source for Emacs and
ELisp, http://xahlee.info/emacs/

▶ MELPA - de facto main repository for Emacs packages

▶ dashlib - library of useful functions missing from main emacs.
Flycheck depends on it so you should probably already have it
installed

▶ cl-lib - Set of functions that implement CommonLisp
functionality in ELisp

▶ Emacs stackexchange


