
Helix: A "Post-modern"
Text Editor

Alex Snezhko

About Helix

● Minimal terminal-based text editor
● Core: a mixture of Vim and Kakoune (another TUI text editor)
● Open-source, written in Rust
● In active development

○ Expect some bugs
○ Limited documentation/ecosystem compared to other editors
○ Looking for contributors!

+

Key features

● Batteries included: built-in LSP, tree-sitter support, file picker, etc.
● Uses a "selection → verb" editing model

○ First select text, then say what to do with it
○ Opposite of vim's "verb → selection" model; to delete a word after your cursor:

■ Vim: dw (delete word)
■ Helix: wd (select next word, then delete it)

● Multiple "modes", each with different purpose
● "Multiple cursors": allows editing in multiple positions simultaneously

Helix compared to [...]

● Vim/Neovim
○ Many commands use same keys… order of invocation is just inverted
○ No need to learn a programming language to customize
○ Plugins currently not supported, though support planned

● Kakoune
○ More feature-rich
○ More traction generated, rapidly-growing community ⇒ better support in the future

● VS Code/traditional GUI editors
○ Minimalistic

■ Faster/less resource-heavy
■ Missing some IDE features

○ Learning curve

Getting started

● Registered in some distro package managers, generic binaries available
● Optionally configurable through a .toml file

○ Can change color theme, keybinds, some behavior
● Includes a "tutor" for a tutorial of the basics: hx --tutor
● LSP servers must be installed manually (if you want LSP support)

Basics

● Start in normal mode when you open a file
○ Can enter other modes from normal mode e.g. i to enter insert mode at the cursor
○ Esc to go back to normal mode

● Most movements also select the text moved past
● Most of these can be prefixed with a number to say how many times to

do it

Other modes

● Select mode (v) for making complex selections
● Match mode (m) for selecting/editing text semantically
● View mode (z) for changing the view
● Goto mode (g) for moving around quickly
● Command mode (:) for issuing commands
● Window mode (Ctrl-w) for doing stuff with windows
● Space mode (Space) for miscellaneous actions

Multiple cursors

● C to create new cursor below current one
● s to put cursors on regexes in selected text
● , to remove all additional cursors
● Alt-, to remove a specific cursor; (and) to cycle for which to remove

A few other neat editing features

● Jumplist for large jumps to different code sections
● . to perform previous edit again
● Macros - record stuff and replay it

Questions?

