
Vim as an IDE

Davis Claiborne

LUG @ NC State

March 11, 2022

Presentation Overview

Introduction

QuickFix List

Reading / Writing Aids

Miscellaneous

Introduction Overview

Introduction
Background
Caveats

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Background
Caveats

Main Idea

“Unix Philosophy”
Let other tools do the dirty work; parse their

output

Davis Claiborne Vim as an IDE 1 / 28

Main Idea

“Unix Philosophy”
Let other tools do the dirty work; parse their

output

20
22

-0
3-

11
Vim as an IDE

Introduction
Background

Main Idea

• Even if you don’t use Vim, you can takeaway some things from this
presentation

• That’s because Vim’s main philosophy is to let other tools do the
dirty work, and just parse their output and provide it in a way that
is convenient for the user to use

• This mindset can be thought of as an extension of the Unix
philosophy

• While largely applicable, Vim definitely has outgrown this to some
extent, especially in the most literal sense, e.g. built-in search
instead of using grep, mostly in order to make certain functionality
easier to use or in order to provide a better experience in any
environment

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Background
Caveats

Assumed Familiarity

• Focus of this presentation: C/C++

• Why?
• Supported by default

• More generalized
• More consistent

• More personal experience

• Other languages are supported

Davis Claiborne Vim as an IDE 2 / 28

Assumed Familiarity

• Focus of this presentation: C/C++

• Why?
• Supported by default

• More generalized
• More consistent

• More personal experience

• Other languages are supported20
22

-0
3-

11
Vim as an IDE

Introduction
Background

Assumed Familiarity

• Before I get into the content itself, I should note that the majority
of this presentation has to do with the C/C++ way of doing things,
i.e. using GCC, GDB, makefiles, etc.

• I also assume some familiarity with these tools - while extremely
useful, covering them could be several presentations in and of
themselves. It shouldn’t be required to understand what’s going,
but some background knowledge will be helpful

• The presentation is like this for two main reasons: first, it’s what
Vim supports and expects by default, which in turn means it will be
more broadly applicable and also less reliant on plugins, which may
fall out of favor or popularity; second, it’s just what I have the most
experience in

• If you don’t like the C way of doing things, don’t worry: Vim has a
huge ecosystem of plugins you can use for other languages, some of
which I’ll show off later in the presentation

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Background
Caveats

Vim 7 vs Vim 8 vs Neovim

• Focused on Vim 8

• Vim 7
• Mostly compatible
• Lacks some nicer features

• Neovim
• Probably better
• Haven’t tried it

Davis Claiborne Vim as an IDE 3 / 28

Vim 7 vs Vim 8 vs Neovim

• Focused on Vim 8

• Vim 7
• Mostly compatible
• Lacks some nicer features

• Neovim
• Probably better
• Haven’t tried it20

22
-0

3-
11

Vim as an IDE
Introduction

Caveats
Vim 7 vs Vim 8 vs Neovim

• Additionally, this presentation is on Vim 8, not Vim 7 or Neovim
• Compatibility between Vim 7 and Vim 8 is pretty good, but Vim 8

introduced a lot of fancy new features which you won’t be able to make
use of if you’re stuck on 7. I’ll make a note of this when applicable, and
suggest some alternatives.

• For personal uses, this shouldn’t be a huge issue, but can be an issue if
you’re stuck developing using older servers. Hopefully this will become
less and less of an issue over time, as sysadmins update to releases with
more modern versions of Vim.

• Finally, I’ll try and preempt a question many of you are probably asking -
“Will this work for Neovim?” The answer is, probably yes, and there
might even be better plugins available for it as well that I’m not familiar
with (though I haven’t personally tested anything on Neovim).

• And to preempt another question - why I’m not using Neovim - I’ve been
meaning to check out Neovim for a while, and have just been busy/lazy.

QuickFix List Overview

QuickFix List
Introduction
Navigation
Advanced Usage

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

What is the QuickFix List?

• List of specific points in specific files

• Designed for compile-edit cycle
• More generally useful
• For compilation: :make1

• Vim must be compiled with +quickfix

1 Assuming Vim’s current directory contains a makefile - see :help :make for more
Davis Claiborne Vim as an IDE 4 / 28

What is the QuickFix List?

• List of specific points in specific files

• Designed for compile-edit cycle
• More generally useful
• For compilation: :make1

• Vim must be compiled with +quickfix

1 Assuming Vim’s current directory contains a makefile - see :help :make for more

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Introduction

What is the QuickFix List?

• The first thing I’d like to talk about is the QuickFix list

• At a high level, the QuickFix list is a list of points, i.e. a line
number and/or column number, in specific files that you can easily
move back and forth between (more on this later)

• The QuickFix list was specifically designed with the idea of
capturing and displaying error messages from compilation, allowing
for quick and easy navigation to the specified lines, but are actually
designed in such a way to be much more generally useful

• To invoke it in what can be thought of as “compilation mode,” use
the command :make (assuming that there is a makefile in Vim’s
current directory)

• Note that, in order to make use of these features, Vim must be
compiled with the +quickfix feature

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Basic Example
If you have the following code:

int main() {

// Did not declare a or b

a = 1;

b = 2;

}

With a basic makefile in the current directory, then run :make

The make command will run and it will show the shell and its
output. You can press “Enter” to continue.

At the bottom of the window, you’ll now see the following text:

(3 of 10): error: `a' undeclared (first use in this function)

When you press “Enter” again, your cursor will also be moved to
this location
Davis Claiborne Vim as an IDE 5 / 28

Basic Example
If you have the following code:

int main() {

// Did not declare a or b

a = 1;

b = 2;

}

With a basic makefile in the current directory, then run :make

The make command will run and it will show the shell and its
output. You can press “Enter” to continue.

At the bottom of the window, you’ll now see the following text:

(3 of 10): error: `a' undeclared (first use in this function)

When you press “Enter” again, your cursor will also be moved to
this location

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Introduction

Basic Example

• Quick demo of basic QF functionality

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Understanding the Output

What does “3 of 10” mean?

• 3: Line number containing filename, row, column, and syntax
error

• 10: The number of lines output from the makefile

1 cc -c -o example.o example.c

2 example.c: In function ‘main’:

3 example.c:3:9: error: ‘a’ undeclared (first use in this function)

4 3 | a = 1;

5 | ^

6 example.c:3:9: note: each undeclared identifier is reported only once for each function...

7 example.c:4:9: error: ‘b’ undeclared (first use in this function)

8 4 | b = 2;

9 | ^

10 make: *** [<builtin>: example.o] Error 1

Davis Claiborne Vim as an IDE 6 / 28

Understanding the Output

What does “3 of 10” mean?

• 3: Line number containing filename, row, column, and syntax
error

• 10: The number of lines output from the makefile

1 cc -c -o example.o example.c

2 example.c: In function ‘main’:

3 example.c:3:9: error: ‘a’ undeclared (first use in this function)

4 3 | a = 1;

5 | ^

6 example.c:3:9: note: each undeclared identifier is reported only once for each function...

7 example.c:4:9: error: ‘b’ undeclared (first use in this function)

8 4 | b = 2;

9 | ^

10 make: *** [<builtin>: example.o] Error 1

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Introduction

Understanding the Output

• Okay, so that was a pretty basic example, but even now you can see
some basic utility

• But you may be wondering something about the previous output:
what does “3 of 10” mean? There’s only 2 errors, and why is the
first one number 3?

• The answer lies in the output from the Makefile itself:

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]

• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

Davis Claiborne Vim as an IDE 7 / 28

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]

• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Navigation

Moving Between QuickFix Items

• Now that you’ve seen some basic usage, you might be thinking,
“That’s great and all, but what if I want to look at something other
than the first error?”

• You’re in luck - there’s a number of ways to move to the next error,
the most basic being :cn[ext] and :cp[revious], both of which
can take a count argument and jump forwards or backwards in the
list by that amount

• One thing to note for :cn and :cp is that their output doesn’t
totally line up with the line numbers, because the QuickFix list is
smart enough to only count messages with line numbers

• You may find :cafter and :cbefore easier to use, since they let
you move up or down in the QF list relative to the current QF
location

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

Davis Claiborne Vim as an IDE 7 / 28

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Navigation

Moving Between QuickFix Items

• If you do want to see a specific line number, you can use the :cc
command, which does two things:

• First, in the command-line (the bottom of the window, where :
commands are input) it shows the makefile output line number
specified, e.g. :cc 3 echos the third line of output

• Additionally, your cursor will also be moved to the file, column, and
row corresponding to that error

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

Davis Claiborne Vim as an IDE 7 / 28

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Navigation

Moving Between QuickFix Items

• To show the entire list of items in the QuickFix window, the
simplest way to do this would be to run :clist

• This shows all the items in the QuickFix list as a quick pop-up at
the bottom of the window, and goes away when you press any key

• Additionally, you can specify a range, offsets, etc.

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]

Davis Claiborne Vim as an IDE 7 / 28

Moving Between QuickFix Items

• Basic:
• :cn[ext] / :cp[revious]

• :caf[ter] / :cbe[fore]
• :cc [nr]

• Show line number [nr]
• Move cursor to corresponding line

• Show all: :cl[ist]

• Time travel:
• Go backwards/forwards: :col[der] / :cnew[er]

• Show surrounding history: :chi[story]20
22

-0
3-

11
Vim as an IDE

QuickFix List
Navigation

Moving Between QuickFix Items

• Finally, you may be thinking, that this would be way more useful if
you could go back and use a previous QuickFix list from earlier

• Good news: you can!

• :colder and :cnewer allow you to go backwards and forwards
through the QuickFix list, while :chistory allows you to see this
history surrounding the current list

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

The QuickFix Window

• Open the QuickFix window: :cope[n]

• New window with QuickFix contents
• Not editable1

• <CR> to jump to corresp. line
• Changes the window above the QuickFix window (if not

already open in current tab)
• Open a new window: CTRL-W_<Enter>

1 By default; see Modifying the QuickFix List
Davis Claiborne Vim as an IDE 8 / 28

The QuickFix Window

• Open the QuickFix window: :cope[n]

• New window with QuickFix contents
• Not editable1

• <CR> to jump to corresp. line
• Changes the window above the QuickFix window (if not

already open in current tab)
• Open a new window: CTRL-W_<Enter>

1 By default; see Modifying the QuickFix List

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Navigation

The QuickFix Window

• You might consider that a bit clunky, however, or you might just
prefer to see a listing with all the Makefile’s output. For this, you
might prefer to use :copen, which opens a new window containing
the QuickFix output

• You can navigate this file just like any other one - using j, k,
searching, etc. Note that, by default, you can’t modify this file. I’ll
talk about this more in a bit.

• In addition to the regular navigation, you can hit “enter,” to jump
to that error

• If that file is already on the current tab, the cursor will jump to that
location; if not, one of the windows above the QuickFix window will
be changed to that location

• If you’d like to avoid this, you can use CTRL-W + Enter

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples

2 See :help grep
3 See :help grepprg

Davis Claiborne Vim as an IDE 9 / 28

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples

2 See :help grep
3 See :help grepprg

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Vimgrep and Grep

• Vim features two commands for searching that populate the
QuickFix list: :vimgrep and :grep

• Both of these commands offer a major advantage over searching
using the command-line, or with other more typical search
commands like / or ?: they put all their results into the QuickFix list

• You may be wondering: what’s the difference between :grep and
:vimgrep? When should I use one or the other?

• The short answer is: use whichever one is more comfortable/useful
for you.

• :vimgrep uses Vim’s grep functionality and patterns, while :grep
uses the grep command by default, but can be configured to use
any program (that formats its output in a QuickFix-compatible way)

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples
2 See :help grep

3 See :help grepprg

Davis Claiborne Vim as an IDE 9 / 28

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples
2 See :help grep

3 See :help grepprg

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Vimgrep and Grep

• In terms of advantages, vimgrep’s major advantages are that it
uses Vim’s search functionality, which means you don’t have to
learn another syntax

• It’s also consistent across systems, so you don’t need to worry about
installing another package, since it will work wherever Vim works

• Finally, it works on any file Vim can read, including zipped files and
remote files (see :help grep for more on that)

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples
2 See :help grep
3 See :help grepprg

Davis Claiborne Vim as an IDE 9 / 28

Vimgrep and Grep

• Put search outputs to QuickFix

• :vimgrep /pattern/flags files1

• Use Vim’s search functionality
• Consistent
• Works on any file Vim can read2

• :grep [args]

• Use external functionality
• grep by default
• Can be configured3

1 See examples in Search Examples
2 See :help grep
3 See :help grepprg

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Vimgrep and Grep

• Meanwhile, the main advantage to using :grep is that you can use
other search utilities for whatever reason you want, be it that you
find the syntax easier to use, it’s faster, it supports additional
options, etc.

• Virtually any search tool should be able to be dropped in and work -
some, like silver searcher, have default flags intended for use with
Vim’s QuickFix list you can use. Others have popular and existing
plugins you can use.

• Even if it doesn’t natively support Vim’s QuickFix list, so long as
the search tool can report at least the file and line number to go to,
any search tool can be used with a bit of fiddling

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]

1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.
To fix, take a look at :help errorformat

2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

Davis Claiborne Vim as an IDE 10 / 28

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]

1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.
To fix, take a look at :help errorformat

2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Modifying the QuickFix List

• The easiest way to modify the QuickFix list is by appending. I won’t
discuss them all here just for the sake of brevity, but most
commands have a corresponding “add” command for easy
appending

• Modifying the QuickFix list in other ways is a bit more challenging

• By default, the QuickFix list is not modifiable, but there are still a
few ways you can change the contents

• Probably one of the more obvious ways to do this is to do the
following: make the file modifiable, make your edits, then either
reload the buffer with cgetbuffer, or write and reload the file

• You may think this is a bit clunky. And you’d be right, which is why
you can also use autocommands to automate this to some extent.

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]

1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.
To fix, take a look at :help errorformat

2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

Davis Claiborne Vim as an IDE 10 / 28

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]

1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.
To fix, take a look at :help errorformat

2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Modifying the QuickFix List

• Vim also has a native way of filtering the QuickFix list, as of Vim
8.1, called the Cfilter plugin

• It’s currently not enabled by default, but you can enable it in your
vimrc with packadd cfilter

• This plugin allows you to use Vim regexes to further filter your
QuickFix window using the :Cfilter command

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]
1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.

To fix, take a look at :help errorformat
2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

Davis Claiborne Vim as an IDE 10 / 28

Modifying the QuickFix List

• Manually:
• Append: add suffix (e.g. :vimgrepa[dd])
• Modify:

• :set modifiable

• Make edits
• :cgetb[uffer] or :cfile <file>1

• Automate with autocommands2

• Cfilter:
• Introduced in 8.1
• Enable: :packadd cfilter

• Filter: :Cfilter /pat/

• Many plugins: [5] [7] [8]
1 Note that, at the moment, these are slightly broken without some tweaking, but should hopefully be fixed soon.

To fix, take a look at :help errorformat
2 See :help QuickFixCmdPre/Post and :help QuickFixCmdPost-example

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Modifying the QuickFix List

• Finally, there are a ton of plugins you can use to allow modifying
the QuickFix list with a bit less customization

• I haven’t used any of them personally, but if you want something
that “just works,” these may be worth looking in to

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:See :help compiler-select for
more

• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!See :help
write-compiler-plugin

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt

Davis Claiborne Vim as an IDE 11 / 28

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:See :help compiler-select for
more

• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!See :help
write-compiler-plugin

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Configuring Other Tools

• For the sake of keeping this from turning into a “Vim QuickFix list
presentation,” I’ll close with some of the more “IDE-like” features
you can configure, but I highly recommend reading more about the
QuickFix list - see :help quickfix.txt for more

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:2
• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!3

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt
2 See :help compiler-select for more
3 See :help write-compiler-plugin

Davis Claiborne Vim as an IDE 11 / 28

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:2
• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!3

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt
2 See :help compiler-select for more
3 See :help write-compiler-plugin

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Configuring Other Tools

• One of the more useful commands is compiler, which lets you set
the compiler, either locally or globally, and lets you set
compiler-specific options

• For supported compilers, Vim can parse their output and populate
the QuickFix list automatically

• For unsupported compilers, it’s relatively easy to add support - this
actually shows off the power of the flexibility of the QuickFix list -
for instance, note that in the supported compilers, PyUnit isn’t
actually compiled, but is still supported. As long as it outputs
information in a consistent and includes the file and line number at
a minimum, you can get it to work with Vim relatively easily

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Introduction
Navigation
Advanced Usage

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:2
• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!3

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt
2 See :help compiler-select for more
3 See :help write-compiler-plugin

Davis Claiborne Vim as an IDE 11 / 28

Configuring Other Tools

• Not comprehensive1

• Change compiler: :compiler <name>

• (Selected) native support:2
• GCC
• PyUnit
• TeX

• Unsupported: Plugins / Hack your own!3

• Change make: makeprg
• Change what executes on :make

• Set default flags, targets, etc.

1 See :help quickfix.txt
2 See :help compiler-select for more
3 See :help write-compiler-plugin

20
22

-0
3-

11
Vim as an IDE

QuickFix List
Advanced Usage

Configuring Other Tools

• You can also change the make program using the makeprg setting

• You can use this to change what’s executed when :make is run, for
instance if you’re not using a makefile, or if you want to add default
flags

• Ultimately, the QuickFix list gives you a lot of flexibility and control,
and, when combined with configuration or plugins, presents a very
powerful tool for working with many files and other programs

Reading / Writing Aids Overview

Reading / Writing Aids
Find / Replace
File Navigation
Autocomplete / Code Navigation

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Searching

• Basic searching (within a given buffer):
• Plain search: / / ?1

• Word under cursor: * / #

• Global searching: :vimgrep /pat/ files

• Recursive: **2

• All files in arglist3: ##
• Any Vim filename4

1 For info on Vim’s regexes, see :help 03.9, :help usr_27, and :help regex

2 See :help wildcards
3 See :help arglist
4 See :help file-searching, :help cmdline-special, and :help filename-modifiers

Davis Claiborne Vim as an IDE 12 / 28

Searching

• Basic searching (within a given buffer):
• Plain search: / / ?1

• Word under cursor: * / #

• Global searching: :vimgrep /pat/ files

• Recursive: **2

• All files in arglist3: ##
• Any Vim filename4

1 For info on Vim’s regexes, see :help 03.9, :help usr_27, and :help regex

2 See :help wildcards
3 See :help arglist
4 See :help file-searching, :help cmdline-special, and :help filename-modifiers

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Find / Replace

Searching

• I’ll start with some basic things I’ve already discussed or you may
already know. These aren’t exactly “IDE-like” in the sense that you
still have to do some work to get what you want, or basic, since
some of them are fairly complex, but they’ll lead you in the direction
and can generally serve as a decent starting point or fallback.

• For instance, you can use / to search. But one you may not have
heard of is ?, which is like / but goes backwards

• By the way, if you’re unfamiliar with Vim’s regex conventions, these
help documents serve as a great starting point

• Additionally, * and # can perform searching for whatever word is
under the cursor

• One problem is that these searches are localized entirely to your
current buffer, and to expand them, you have to search to another
buffer

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Searching

• Basic searching (within a given buffer):
• Plain search: / / ?1

• Word under cursor: * / #

• Global searching: :vimgrep /pat/ files

• Recursive: **2

• All files in arglist3: ##
• Any Vim filename4

1 For info on Vim’s regexes, see :help 03.9, :help usr_27, and :help regex
2 See :help wildcards
3 See :help arglist
4 See :help file-searching, :help cmdline-special, and :help filename-modifiers

Davis Claiborne Vim as an IDE 12 / 28

Searching

• Basic searching (within a given buffer):
• Plain search: / / ?1

• Word under cursor: * / #

• Global searching: :vimgrep /pat/ files

• Recursive: **2

• All files in arglist3: ##
• Any Vim filename4

1 For info on Vim’s regexes, see :help 03.9, :help usr_27, and :help regex
2 See :help wildcards
3 See :help arglist
4 See :help file-searching, :help cmdline-special, and :help filename-modifiers

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Find / Replace

Searching

• To solve that, there are some handy global search tools. Some of which
I’ve already talked about. That’s right - I still won’t shut up about the
QuickFix list!

• For instance, with Vimgrep, you can specify which files to include in your
search

• This gives you can incredibly flexible yet powerful searching scheme
• By the way, I’ll give some more examples of these in a bit, so don’t worry

if this doesn’t make any sense right now
• Vim supports file globbing similar to bash’s, including the “globstar”

pattern for recursive looking.
• You can also use the special double pound sign (or double octothorpe if

you’re feeling swanky), which matches your entire arglist
• Finally, Vim has a pretty featureful filename modification syntax, which

you can use here as well

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Search Examples

• Search for “Linux” in all files in the current directory1 ending
in .c or .h:2

:vimgrep /\<Linux\>/g **/*.c **/*.h

• Search for “Lua” in all files relative to the current buffer’s
path:

:vimgrep /\<Lua\>/g %:h/**/*

• Search all open buffers:3
:bufdo vimgrepadd /pat/ %

1 Vim has its own current directory; see :help current-directory
2

\< and \> represent word boundaries; see :help /\<
3 Assuming all buffers are named

Davis Claiborne Vim as an IDE 13 / 28

Search Examples

• Search for “Linux” in all files in the current directory1 ending
in .c or .h:2

:vimgrep /\<Linux\>/g **/*.c **/*.h

• Search for “Lua” in all files relative to the current buffer’s
path:

:vimgrep /\<Lua\>/g %:h/**/*

• Search all open buffers:3
:bufdo vimgrepadd /pat/ %

1 Vim has its own current directory; see :help current-directory
2

\< and \> represent word boundaries; see :help /\<
3 Assuming all buffers are named

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Find / Replace

Search Examples

• So, let’s get into some examples. This first one searches for the text
“Linux” recursively for all files ending in .c and .h in Vim’s current
directory

• Remember that the double asterisks mean “0 or more directories”
• By the way, the funky bracket notation just is Vim’s way of specifiying a

“word boundary”
• Next, I’ll show off using a path modifier by searching for the word “Lua”

recursively in all files at or below the level of the current buffer’s path
• %:h represents the “head” of the path, i.e. everything but the filename
• Finally, what if you want to search all open buffers? Here, the handy

:bufdo command becomes useful
• This executes a command, in this case :vimgrepadd, on each each open

buffer; in this context, the % represents the buffer name
• This simple version will give you errors if you have unnamed buffers

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Replace

• Buffer: :%s/pat/sub/g1

• Beyond:
• Populate QuickFix list
• :cdo %s/pat/sub/flags | update

• External tools:
• Buffer: :%!sed s/pat/sub/flags

• Beyond: Varies

1 See :help :range {address} and :help :su

Davis Claiborne Vim as an IDE 14 / 28

Replace

• Buffer: :%s/pat/sub/g1

• Beyond:
• Populate QuickFix list
• :cdo %s/pat/sub/flags | update

• External tools:
• Buffer: :%!sed s/pat/sub/flags

• Beyond: Varies

1 See :help :range {address} and :help :su

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Find / Replace

Replace

• As far as replacing goes, it’s more of the same, really
• There’s a special command, which you’ve likely seen as :%s before,

for doing it in the current buffer
• Going beyond the current buffer, you have a few options:
• You can, once again, use the QuickFix list, this time with the :cdo

command, which is like the :bufdo command from before, but
works on items in the QuickFix list

• The | update writes those changes - you can leave this off if you
just want to change the text but don’t want to save yet.

• Finally, you can, of course, always you an external tool like sed if
you’d like.

• Vim specifically lets you pass the text of a buffer to a command
using the syntax shown, or you can just use the tool from the
command-line however you like.

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Jumping to Files

• path

• List of paths to search
• See path: :set path

• Add: :set path+=/path/to/dir/

• Check: :checkpath

• Under cursor:
• Change buffer: gf
• Open window: CTRL-W_gf

Davis Claiborne Vim as an IDE 15 / 28

Jumping to Files

• path

• List of paths to search
• See path: :set path

• Add: :set path+=/path/to/dir/

• Check: :checkpath

• Under cursor:
• Change buffer: gf
• Open window: CTRL-W_gf20

22
-0

3-
11

Vim as an IDE
Reading / Writing Aids

File Navigation
Jumping to Files

• Often when you’re working on code, you’ll want to open some other
file. Vim offers a number of ways to do this.

• In addition to Vim’s current directory, there’s a path setting that
can be modified to have Vim look at additional paths included, like
libraries for instance.

• You can see the path and add to it like so; additionally, Vim has a
built-in command that can look for include files and check their
path as well

• Files added to your path are then used by other commands, like gf,
which goes to the filename under the cursor

• Additionally, control w + f can be used to open the path under the
cursor in a new window

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

File Explorer

• Netrw

• Launch: e /path/to/explore/

• Supports:
• Compressed files
• Remote files (ssh/ftp)1

1 Only really good for quick edits in my opinion, though it does hide latency
Davis Claiborne Vim as an IDE 16 / 28

File Explorer

• Netrw

• Launch: e /path/to/explore/

• Supports:
• Compressed files
• Remote files (ssh/ftp)1

1 Only really good for quick edits in my opinion, though it does hide latency

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
File Navigation

File Explorer

• You might be surprised to learn that Vim has its own built-in
keyboard-driven file explorer

• This file explorer, called netrw, can be invoked by trying to edit a
directory, for instance, the current one.

• Even more impressively, it supports in-place editing for many compressed
file types, like tar and zip, and even editing remote files via several
different network protocols

• I will say that, while remote editing support is pretty handy, I often find it
easier just to remote in to the specific machine I want to use instead

• The main advantages of netrw are convenience and the fact that, since
you’re editing a local copy of the file and just transferring it on save,
you’re less affected by network latency.

• The main downsides are that, even with keyless auth, it can still feel a bit
slow and clunky to open new files, and especially to use netrw to explore
files on the remote machine. Additionally, since you’ll often want a
remote terminal, you’ll usually have to ssh in anyways.

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Basic Completion

• “Insert completion”1

• Prefix: CTRL-X
• CTRL-F: File names
• CTRL-N: Keywords (local buffer)
• CTRL-I: Keywords (included files)
• ...
• CTRL-O: “Omni” (Smart guess)
• CTRL-]: Tag

• Cycle: CTRL-N / CTRL-P

1 See :help ins-completion

Davis Claiborne Vim as an IDE 17 / 28

Basic Completion

• “Insert completion”1

• Prefix: CTRL-X
• CTRL-F: File names
• CTRL-N: Keywords (local buffer)
• CTRL-I: Keywords (included files)
• ...
• CTRL-O: “Omni” (Smart guess)
• CTRL-]: Tag

• Cycle: CTRL-N / CTRL-P

1 See :help ins-completion

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Autocomplete / Code Navigation

Basic Completion

• Vim provides pretty basic completion on its own, no external tools
required

• While not the most powerful, these still can be useful, for instance if
you’re not working with tag information, and are still good enough
to get the job done for simple cases

• Vim calls this “insert completion,” and it can be accessed by using
CTRL-X while in insert mode

• Vim offers a variety of insert completion options, including file
names, keywords, and a “smart” mode

• The most important of these is “tag”, which I’ll discuss soon
• Once you’ve selected an options, you can use control N and P to

cycle through the options you’re given
• One of the keyword options is what you’re most likely to want

usually

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Ctags

• Category of tools that produce “tag files” [14]

• Tag files: tagname\t tagfile\t tagaddress

• tagname: Keyword
• tagfile: File path
• tagaddress: ex command (regex)

• Lacks context

Davis Claiborne Vim as an IDE 18 / 28

Ctags

• Category of tools that produce “tag files” [14]

• Tag files: tagname\t tagfile\t tagaddress

• tagname: Keyword
• tagfile: File path
• tagaddress: ex command (regex)

• Lacks context20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Autocomplete / Code Navigation

Ctags

• If you want something a bit better, though, you can try out Ctags
• Ctags really just the name for an overarching style of files, called “tag

files,” created by external tools.
• Universal Ctags is the most up-to-date version, and contains support for

many languages
• These tools produce fairly simplistic files, which contain many, often

sorted, lines with the following structure:
• A tag name, which is the keyword you can use as lookup
• Next is a literal tab character, then the filename to look for
• Finally, after another tab is what’s called the “address,” which is an ex

command to locate the text; usually this takes the form of a regex
• While these are useful, and much better for insertion completion, they

still leave a lot to be desired
• By the way, why do you think a regex is used instead of line numbers?

It’s so that the tag file can still be useful after minor changes.

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Navigating Tags

• Jump to definition:
• First: :tag <name>1 / CTRL-]

• Pick: :tselect <name> / g]

• Tag stack:23

• Following a tag pushes it to a stack
• Pop a tag and jump back: :pop / CTRL-T

• “Preview”: :ptag <name> / CTRL-}

• More4

1 Name can be a regex; see :help tag-regexp
2 See :help tagstack
3 See also: the jump stack; :help jump-motions
4 See usr_29 and :help tagsrch.txt

Davis Claiborne Vim as an IDE 19 / 28

Navigating Tags

• Jump to definition:
• First: :tag <name>1 / CTRL-]

• Pick: :tselect <name> / g]

• Tag stack:23

• Following a tag pushes it to a stack
• Pop a tag and jump back: :pop / CTRL-T

• “Preview”: :ptag <name> / CTRL-}

• More4

1 Name can be a regex; see :help tag-regexp
2 See :help tagstack
3 See also: the jump stack; :help jump-motions
4 See usr_29 and :help tagsrch.txt

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Autocomplete / Code Navigation

Navigating Tags

• Using these tags, you can navigate through your code a bit more easily
• Specifically, you can jump to a matching symbol’s definition with the

:tag name command, or the keyword under the cursor with CTRL-]

• If you have many matches, you can see a list of them with :tselect or
g] and pick from that list

• One useful concept is the tag stack, which keeps track of what tags
you’ve jumped to, and where you’ve jumped from

• When you follow a tag, your previous location gets pushed to the stack;
by using :pop and CTRL-T, you can pop that value from the stack and
go back to that location

• One final thing I find useful that I’ll discuss is the preview window, which
opens the location of a tag, but then moves your cursor back to the
previous window

• Despite their simplicity, you can do a lot with tags - I recommend reading
the help file for more of what you can do with them

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Cscope

• Still lacks context

• Initiailze: [11]
• Generate: cscope -b -R

• Tell Vim: :cscope add cscope.out

• Main features:
• Find symbol: :cs find s <symbol>

• Find definition: :cs find g <symbol>

• Find child funcs: :cs find d <symbol>

• More...1

• Populate QuickFix: :set cscopequickfix

1 See :help cscope

Davis Claiborne Vim as an IDE 20 / 28

Cscope

• Still lacks context

• Initiailze: [11]
• Generate: cscope -b -R

• Tell Vim: :cscope add cscope.out

• Main features:
• Find symbol: :cs find s <symbol>

• Find definition: :cs find g <symbol>

• Find child funcs: :cs find d <symbol>

• More...1

• Populate QuickFix: :set cscopequickfix

1 See :help cscope

20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Autocomplete / Code Navigation

Cscope

• Cscope is still limited in the same ways as ctags, namely that it
lacks context, so it can’t be “smart,” but it is more powerful than
plain Ctags

• You can initialize it using the external cscope program

• Next, you tell Vim about it with :cscope add

• Once you’ve done that, you can use a variety of builtin find

functions with different prefixes to get whatever information you’ve
specified

• Additionally, you can get it to populate the QuickFix list as well,
using the cscopequickfix setting

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Alternatives

• GNU Global [13]
• Has Cscope mode → Vim compatible
• Also has Vim plugins
• Supports 30+ languages
• Incremental builds

• Eclim [12]
• Eclipse functionality
• Requires a headless Eclipse client

• Many more [16, “Tagging systems”]

Davis Claiborne Vim as an IDE 21 / 28

Alternatives

• GNU Global [13]
• Has Cscope mode → Vim compatible
• Also has Vim plugins
• Supports 30+ languages
• Incremental builds

• Eclim [12]
• Eclipse functionality
• Requires a headless Eclipse client

• Many more [16, “Tagging systems”]20
22

-0
3-

11
Vim as an IDE

Reading / Writing Aids
Autocomplete / Code Navigation

Alternatives

• Cscope and Ctags aren’t the only things tools to use, though. I
haven’t tried any of these yet, but they could be good for your use
cases.

• GNU Global is one of the most stable alternatives; it looks
promising and should be natively compatible with Vim

• For all you Eclipse fans out there, you can try out Eclim, which has
Vim support and works by running a headless version of Eclpise

• There are tons of tagging systems to choose from

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Find / Replace
File Navigation
Autocomplete / Code Navigation

Language Servers

• Pre-Vim 8+/Neovim:
• Linting: Syntastic [6]
• Completion: YouCompleteMe [10]

• Absolutely tons of plugins [15] [18]

• Most popular: CoC [1]
• Praise: “Just works,” “most complete”
• Criticism: “Bloated,” “Own ecosystem”

Davis Claiborne Vim as an IDE 22 / 28

Language Servers

• Pre-Vim 8+/Neovim:
• Linting: Syntastic [6]
• Completion: YouCompleteMe [10]

• Absolutely tons of plugins [15] [18]

• Most popular: CoC [1]
• Praise: “Just works,” “most complete”
• Criticism: “Bloated,” “Own ecosystem”20

22
-0

3-
11

Vim as an IDE
Reading / Writing Aids

Autocomplete / Code Navigation
Language Servers

• Finally, we get to the most powerful aid of them all - language servers,
often called “LSPs” due to the protocol they use

• LSPs do an absolute ton of things, from linting to semantic analysis. No
one plugin (that I’m aware of) covered all this functionality pre-Vim 8,
but there were alternatives you could use for each one that I’ve listed

• Frankly, there’s almost too many LSP plugins for me too choose from (at
the moment, there are at least 5 with significant user bases), and
definitely far too many to cover here, not to mention the fact that the
server you choose is just as important, if not more so, than the frontend

• Frankly, I don’t have enough experience with these to even discuss them,
but they look really cool and are the next thing I plan on looking in to
when I get the time.

• CoC is the most popular plugin from what I’ve seen, and it’s so popular
because of how complete it is, while also apparently being the most easy
to set up. Some criticize it for being NodeJS based and trying to reinvent
too much of what Vim already does

Miscellaneous Overview

Miscellaneous
Interactive Debugging
Per-Project Config
Persistence
Plugins

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Termdebug

• In-Vim Debugging:
• Pre-Vim 8: Plugins [2]
• Vim 8+: :Termdebug1

• GDB interface

• Usage:
• Initialize: :packadd termdebug

• Start: :Termdebug <executable>

• Windows
• Code: Shows current line, breakpoints, etc.
• Assembly : (Optional) Assembly view
• Program: Displays program output
• GDB interface: Standard GDB terminal

1 See :help terminal-debug

Davis Claiborne Vim as an IDE 23 / 28

Termdebug

• In-Vim Debugging:
• Pre-Vim 8: Plugins [2]
• Vim 8+: :Termdebug1

• GDB interface

• Usage:
• Initialize: :packadd termdebug

• Start: :Termdebug <executable>

• Windows
• Code: Shows current line, breakpoints, etc.
• Assembly : (Optional) Assembly view
• Program: Displays program output
• GDB interface: Standard GDB terminal

1 See :help terminal-debug

20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Interactive Debugging

Termdebug

• Prior to Vim 8, Vim lacked native built-in debugger functionality, so
you had to either use external tools or plugins to debug

• Since Vim 8, you have Vim’s ”Termdebug” plugin
• Like much of the rest of Vim’s builtin tooling, this is primarily a

C/C++ tool, as it acts as a wrapper around GDB. Though of
course, any languages supported by GDB can be used with it.

• Usage is pretty intuitive if you’re familiar with GDB already: once
it’s initialized, you launch it by running :Termdebug followed by
the program name

• This command creates 3 windows by default: a code window at the
top, a stdout window beneath that, and a GDB window at the
bottom

• While you can just treat it like GDB inside Vim, Vim has special
commands available to make things easier

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Other Debuggers

• GDB-compatible: g:termdebugger

• Debug Adapter Protocol: LSP for Debugging
• Vimspector [9]

• Other plugins: [17]

• External tools: :terminal (Vim 8+)

Davis Claiborne Vim as an IDE 24 / 28

Other Debuggers

• GDB-compatible: g:termdebugger

• Debug Adapter Protocol: LSP for Debugging
• Vimspector [9]

• Other plugins: [17]

• External tools: :terminal (Vim 8+)20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Interactive Debugging

Other Debuggers

• If you want to use a GDB-compatible debugger, you can using the
g:debugger setting

• Unfortunately, Vim currently only supports GDB-compatible debuggers;
what happens if you want to use something else?

• Thanks to same new features in Vim, it is possible to do, and has been
done, but it’s definitely not as trivial as adding support for a new compiler

• That being said, in the same way that LSPs are changing linting and
other writing functionalities, a new idea, called DAPs, or Debugging
Adapter Protocol, is also being developed

• The largest DAP plugin I’m aware of for Vim is Vimspector, but I haven’t
looked into this area a lot, as GDB meets all my needs

• If you can’t or don’t want to use a DAP, there are plenty of other Vim
debugging plugins available, though

• Finally, if a command-line tool exists, you can use, simply via command
line. Since Vim 8, you can open a terminal directly in Vim and run the
command that way if you like, or you can use your favorite
window/display manager instead

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Configuring Individual Projects

• Enable: :set exrc1

• Recommended: :set secure

• Even more recommended: Project-specific autocommands2

1 See :help 'exrc'
2 See :help trojan-horse

Davis Claiborne Vim as an IDE 25 / 28

Configuring Individual Projects

• Enable: :set exrc1

• Recommended: :set secure

• Even more recommended: Project-specific autocommands2

1 See :help 'exrc'
2 See :help trojan-horse

20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Per-Project Config

Configuring Individual Projects

• Often you’ll want to have project-specific settings that you’ll want
to configure; for instance, a project may enforce tabs instead of
spaces, or you may want to use a specific compiler

• Changing these settings every time would be awfully tedious.
Luckily, Vim has settings that let you do just that

• Vim has an option, called exrc, that, if set, will look for a .vimrc

file and, if found, execute those commands

• For security reasons, it’s also recommended to set the secure option
as well

• Additionally, the Vim documentation says that, really, you should
use autocommands for each directory you want to configure, since
this will be much more secure

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Sessions

• Save workspace: :mksession

• Reload workspace:
• vim -S Session.vim

• :source Session.vim

• Gotchas:
• Terminal
• Unsaved changes1

1 See :help swap-file

Davis Claiborne Vim as an IDE 26 / 28

Sessions

• Save workspace: :mksession

• Reload workspace:
• vim -S Session.vim

• :source Session.vim

• Gotchas:
• Terminal
• Unsaved changes1

1 See :help swap-file

20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Persistence

Sessions

• Often when you’re working, you’ll have to pause, and maybe even
shut down your computer you’re working on

• Many people like to be able to jump right back into things to get
back to work

• That’s where Vim’s sessions come in. Vim’s sessions can essentially
be thought of as a “saved checkpoint” of where you left off (for the
most part - more on that soon)

• You can create a session with :mksession, then when you launch
Vim, you can just run vim -S Session.vim, or use the :source
command, to restore that session

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Sessions

• Save workspace: :mksession

• Reload workspace:
• vim -S Session.vim

• :source Session.vim

• Gotchas:
• Terminal
• Unsaved changes1

1 See :help swap-file

Davis Claiborne Vim as an IDE 26 / 28

Sessions

• Save workspace: :mksession

• Reload workspace:
• vim -S Session.vim

• :source Session.vim

• Gotchas:
• Terminal
• Unsaved changes1

1 See :help swap-file

20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Persistence

Sessions

• This does overall a very good job, though it does have some
potential “gotchas”

• The main ones have to do with the terminal features - namely, the
contents of the terminal are not saved, and termdebug restoration
gets a bit messed up

• Unsaved changes also aren’t saved, nor are they reapplied at the
start of a new session. This means you’ll have to save all your work,
or use swap files

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Undo Persistence

• Undo tree1

• Enable: :set undofile

• Increase/decrease size: undolevels

1 See :help undo-tree

Davis Claiborne Vim as an IDE 27 / 28

Undo Persistence

• Undo tree1

• Enable: :set undofile

• Increase/decrease size: undolevels

1 See :help undo-tree

20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Persistence

Undo Persistence

• You may be aware of Vim’s powerful tree structure for storing
changes

• But what you may not know is that you can have these persist even
after reboot using undofiles

• Note that you can still “lose” changes, especially with undo
persistence, as Vim limits how large the undo tree can become. If
you’d like to avoid this, you can increase the undolevels setting

Introduction
QuickFix List

Reading / Writing Aids
Miscellaneous

Interactive Debugging
Per-Project Config
Persistence
Plugins

Plugins

• Git:
• Fugitive [3]
• gitgutter [4]

• Fuzzy finders

• More

Davis Claiborne Vim as an IDE 28 / 28

Plugins

• Git:
• Fugitive [3]
• gitgutter [4]

• Fuzzy finders

• More20
22

-0
3-

11
Vim as an IDE

Miscellaneous
Plugins

Plugins

• Finally, I’ll close with this: because of Vim’s popularity, unless
you’re looking for some particularly advanced functionality, there’s a
very good chance what you’re looking for exists as a plugin that can
be used

• For instance, many people want in-editor Git control and
information; fugitive and gitgutter, are two programs that handle
each of those, respectively.

• There are also tons of plugins to add fuzzy finding, as well as many
other features. Git was just the main one I wanted to talk about,
since it’s a commonly requested IDE feature

References I

Plugins
[1] CoC (Node-based VSCode-like plugin ecosystem for Vim)

https://github.com/neoclide/coc.nvim

[2] Conque-GDB (GDB CLI and terminal emulator for Vim)
https://github.com/vim-scripts/Conque-GDB

[3] Fugitive (A Git-wrapper for Vim)
https://github.com/tpope/vim-fugitive

[4] gitgutter (Show git difs in the column)
https://github.com/airblade/vim-gitgutter

[5] quickfix-reflector (Edit text in the quickfix window)
https://github.com/stefandtw/quickfix-reflector.vim

[6] Syntastic (Vim syntax checker)
https://github.com/vim-syntastic/syntastic

[7] vim-editqf (Make quickfix entries editable)
https://github.com/jceb/vim-editqf

[8] vim-qfedit (Edit the quickfix list freely)
https://github.com/itchyny/vim-qfedit

[9] vimspector (A multi-language debugging system for Vim)
https://github.com/puremourning/vimspector

[10] YouCompleteMe (Vim completion engine)
https://github.com/ycm-core/YouCompleteMe

https://github.com/neoclide/coc.nvim
https://github.com/vim-scripts/Conque-GDB
https://github.com/tpope/vim-fugitive
https://github.com/airblade/vim-gitgutter
https://github.com/stefandtw/quickfix-reflector.vim
https://github.com/vim-syntastic/syntastic
https://github.com/jceb/vim-editqf
https://github.com/itchyny/vim-qfedit
https://github.com/puremourning/vimspector
https://github.com/ycm-core/YouCompleteMe

References II

Software
[11] Cscope (Source code viewing tool)

http://cscope.sourceforge.net/

[12] Eclim (Eclipse for Vim)
http://eclim.org/index.html

[13] GNU Global (Source code tagging system; compatible with Cscope)
https://www.gnu.org/software/global/

[14] Universal Ctags (A modern Ctags implementation)
https://ctags.io/

Websites
[15] Langserver.org (Collection of LSP resources)

https://langserver.org/

[16] ’Source Code Reading’ related sites (GNU Global Links)
https://www.gnu.org/software/global/links.html

[17] Vim Awesome - Debug (List of Vim debug plugins)
https://vimawesome.com/?q=debug

[18] Vim Awesome - LSP (List of Vim LSP plugins)
https://vimawesome.com/?q=lsp

http://cscope.sourceforge.net/
http://eclim.org/index.html
https://www.gnu.org/software/global/
https://ctags.io/
https://langserver.org/
https://www.gnu.org/software/global/links.html
https://vimawesome.com/?q=debug
https://vimawesome.com/?q=lsp

	Introduction
	Background
	Caveats

	QuickFix List
	Introduction
	Navigation
	Advanced Usage

	Reading / Writing Aids
	Find / Replace
	File Navigation
	Autocomplete / Code Navigation

	Miscellaneous
	Interactive Debugging
	Per-Project Config
	Persistence
	Plugins

