
Open Source Digital Logic Design
Using open source tools for designing, testing, and synthesising

Verilog modules

Davis Claiborne

LUG @ NC State

August 31, 2021

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

What is digital logic?

• Circuits need to do things

• Claude Shannon: A Symbolic Analysis of
Relay and Switching Circuits

• Representing circuits with Boolean
algebra

• Boolean: 0 or 1 (high/low voltage)
[11]

Davis Claiborne Open Source Digital Logic Design 1 / 28

What is digital logic?

• Circuits need to do things

• Claude Shannon: A Symbolic Analysis of
Relay and Switching Circuits

• Representing circuits with Boolean
algebra

• Boolean: 0 or 1 (high/low voltage)
[11]20

21
-0

8-
31

Open Source Digital Logic Design
Digital Logic

Boolean algebra
What is digital logic?

• Basically, digital logic is getting circuits to do things

• For a long time, getting circuits to do thing thing you wanted was
more of an art than a science

• That was true until Claude Shannon proved that any circuit can be
represented using Boolean algebra; previous study showed that any
logic expression can be expressed with Boolean algebra

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

What is Boolean algebra?

• Values can be 0/1, F/T, etc.

• Basic operations are “and,” “or,” and “not”
• These are required to represent any expression
• More operators exist1

• Can only answer yes or no questions
• If you abstract the yes or no questions enough, can do

math—more later

1 And for some, a single one (e.g. NAND) can represent all logic operations!
Davis Claiborne Open Source Digital Logic Design 2 / 28

What is Boolean algebra?

• Values can be 0/1, F/T, etc.

• Basic operations are “and,” “or,” and “not”
• These are required to represent any expression
• More operators exist1

• Can only answer yes or no questions
• If you abstract the yes or no questions enough, can do

math—more later

1 And for some, a single one (e.g. NAND) can represent all logic operations!

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Boolean algebra

What is Boolean algebra?

• So what exactly is Boolean algebra?

• Basically, Boolean algebra is using two opposite states, usually
represented as 0 and 1, true and false, or some other pair to
represent logic expressions

• Using the basic operators and, or, and not, any logic expression can
be represnted

• Now, you may be wondering: what can Boolean algebra answer?
What exactly is a logic expression?

• Boolean algebra can answer any question that can be answered
strictly with “yes” or “no” questions

• Those of you more in the know know that last statement isn’t
totally true - I’ll get back to that later, don’t worry

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Notation

Logic notation EE expression Logic gates

And Z = X ∧ Y Z = X · Y
X
Y Z

Or Z = X ∨ Y Z = X + Y
X
Y Z

Not ¬X X 1 X X

1 Sometimes you’ll see people use a single apostrophe/tick as well, i.e. X′

Davis Claiborne Open Source Digital Logic Design 3 / 28

Notation

Logic notation EE expression Logic gates

And Z = X ∧ Y Z = X · Y
X
Y Z

Or Z = X ∨ Y Z = X + Y
X
Y Z

Not ¬X X 1 X X

1 Sometimes you’ll see people use a single apostrophe/tick as well, i.e. X′

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Boolean algebra

Notation

• There are three primary notations: formal logic notation, the
electrical engineering expression form, and logic gate notation,
which is also used by electrical engineers

• As a somewhat biased electrical/computer engineer, I much prefer
the last two, just because those are what I’m used to seeing

• If you’re wondering why ECE people use two representations, the
reason is essentially just that the two different notations are good
for different things; the expressions are much more compact and
easier to optimize (generally), but logic gates are much easier to
look at and follow visually

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

Davis Claiborne Open Source Digital Logic Design 4 / 28

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Boolean algebra

Truth tables

• Truth tables are one way of analyzing the outputs of logical
expressions

• They show the output for every permutation of inputs; the order of
the inputs is traditionally done starting at all zeros and going to all
1s, alternating bits starting from the right until all permutations are
seen

• Here I’m showing the truth tables for the 3 basic logic gates

• Reading them isn’t too hard, just think of it as a true or false
problem

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

Is X true AND is Y true? No

Davis Claiborne Open Source Digital Logic Design 4 / 28

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

Is X true AND is Y true? No20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Boolean algebra

Truth tables

• For instance, here’s a quick example: in the highlighted row of this
truth table, are X and Y both true? The answer is no, since Y is 0
(false)

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

Is X true AND is Y true? Yes

Davis Claiborne Open Source Digital Logic Design 4 / 28

Truth tables

And:

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

Or:

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Not:

X X
0 1
1 0

Is X true AND is Y true? Yes20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Boolean algebra

Truth tables

• Here’s another quick example: are X and Y both true now? The
answer is yes, because both X and Y are 1

• So, why do we use truth tables?

• Basically, they’re just another way to help look at how the inputs
and outputs relate for a given input

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Finite State Machines

• Allow more complex, useful circuits

• Two main types:
• Moore: Output depends only on state
• Mealey: Output depends on state and inputs

• How to store state?

Davis Claiborne Open Source Digital Logic Design 5 / 28

Finite State Machines

• Allow more complex, useful circuits

• Two main types:
• Moore: Output depends only on state
• Mealey: Output depends on state and inputs

• How to store state?20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Finite State Machines

Finite State Machines

• Finite state machines are a way to make more complex, useful
circuits by adding state information to them

• They’re really more of a design tool, since all these things could be
done without a state machine, it would just be a pain

• There are two main types, Moore and Mealey

• The main difference between the two is whether the output depends
on the input or not: for Moore it depends only on the state, for
Mealey it also depends on te inputs

• What this means is that Moore machines tend to be larger and
simpler, while Mealey machines are smaller, but more complex

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Moore vs Mealey

A
0

reset

0

B
0

1

state
found?

input

1

C
0

0

0

D
1

1

1

0

Moore 101 detector

A

reset

0/0

B

1/0

state

input/output

1/0

C

0/0

0/0

1/1

Mealey 101 detector
Davis Claiborne Open Source Digital Logic Design 6 / 28

Moore vs Mealey

A
0

reset

0

B
0

1

state
found?

input

1

C
0

0

0

D
1

1

1

0

Moore 101 detector

A

reset

0/0

B

1/0

state

input/output

1/0

C

0/0

0/0

1/1

Mealey 101 detector

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Finite State Machines

Moore vs Mealey

• Here are two example FSMs where you can see the differences between More
and Mealey more easily

• Both are looking to detect the input pattern “101”, but look fairly different

• Let’s start looking at the Moore FSM:

• To the rigt of the graph you can see the general template of how to read this
graph: each circle is a state, where the top line shows the name and the bottom
line shows the output; arrows coming out of the circle represent an input
causing the state to change

• Starting at A, since that where it gets reset to, it should be fairly easy to
convince yourself this does, in fact, work

• Now, let’s look at the Mealey FSM:

• In its case, the circle just represents a state, since Mealey FSM outputs relay in
the state and the input, which is why the output is part of the arrow here

• One thing I’ve kind of glossed over so far, is how do you store information in
digital logic? Not just in FSMs, but in general?

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Storage

• Flip-flops, latches, registers

D

CK

Q

Q

D Flip-flop

J

CK

K

CLR
Q

Q
PR

JK Flip-flop

R

S

Q

Q

RS Latch

• Triangle often represents clock
• Circle represents active low logic

Davis Claiborne Open Source Digital Logic Design 7 / 28

Storage

• Flip-flops, latches, registers

D

CK

Q

Q

D Flip-flop

J

CK

K

CLR
Q

Q
PR

JK Flip-flop

R

S

Q

Q

RS Latch

• Triangle often represents clock
• Circle represents active low logic

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Finite State Machines

Storage

• Storage in circuits is done using what are known as flip-flops,
latches, or registers

• The terminology you use depends on a lot of different things, but
for the most part the terms are interchangeable enough at a high
level that it doesn’t really matter

• In reality, these elements all differ in their implementation and use,
but I won’t go too deep into them here

• I will point out a few general things for reading these, though:

• Note how the D and JK FF have an input called CK - that stands
for “clock,” and is often represented with the triangle on the pin

• The circle you see on some of the pins on the JK FF means that it
uses “active low” logic

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Why optimize?

• Fewer components

• Cheaper

• Simpler

• Faster

• Efficient

• So how is it done?

Davis Claiborne Open Source Digital Logic Design 8 / 28

Why optimize?

• Fewer components

• Cheaper

• Simpler

• Faster

• Efficient

• So how is it done?20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Why optimize?

• One of the key benefits Claude Shannon brought to digital logic with the
introduction of Boolean algebra was a reliable way to optimize the
expressions down to simpler formats

• Optimized expressions offer a number of advantages; by reducing the
number of components in a circuit, you can make it cheaper, simpler,
faster, and more efficient

• Optimize circuits are less expensive because they have fewer components
• They’re easier to debug because they’re simpler, making it faster to find

mistakes
• They’re faster, because each component introduces propogation delay as

the current travels through it
• They’re more efficient because each component consumes power
• There are a number of tecniques for performing optimization that I’ll

quickly discuss

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 1: Reduce logic expressions

• Theorems:

• X + 0 = X
• X + 1 = 1
• X · 0 = 0
• X · 1 = X
• (X) = X

• X + X = X
• X + X = 1

• X · X = X
• X · X = 0

• X(Y + Z) = XY + XZ
• XY + XZ = XZ + XY

• These can be used to help reduce expressions:
• XY + XY = Y (X + X) = Y · 1 = Y

Davis Claiborne Open Source Digital Logic Design 9 / 28

Optimization technique 1: Reduce logic expressions

• Theorems:

• X + 0 = X
• X + 1 = 1
• X · 0 = 0
• X · 1 = X
• (X) = X

• X + X = X
• X + X = 1

• X · X = X
• X · X = 0

• X(Y + Z) = XY + XZ
• XY + XZ = XZ + XY

• These can be used to help reduce expressions:
• XY + XY = Y (X + X) = Y · 1 = Y20

21
-0

8-
31

Open Source Digital Logic Design
Digital Logic

Optimization
Optimization technique 1: Reduce logic
expressions

• In Boolean algebra, there are a number of theorems that can be
used to reduce logic expressions

• Here are some of the more simple theorems - I won’t go through
them all or prove them for the sake of brevity, but most of them can
be proven fairly easily just by drawing the truth table

• You can reduce logic expressions using these theorems (in both
directions) to eliminate redundant terms

• The main problem with this technique is that it requires a bit of
practice for some of the longer, more complicated expressions, and
it just isn’t really all that efficient to do - lots of guess and check

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

More theorems: De Morgan’s Law

• (A + B) = A · B
• (A · B) = A + B

• “Break the line, change the sign”

[12]

(A + B + C)(A + B + C) = A + B + C + A + B + C =

A B C + A B C = ABC + ABC = AB(C + C) = AB

Davis Claiborne Open Source Digital Logic Design 10 / 28

More theorems: De Morgan’s Law

• (A + B) = A · B
• (A · B) = A + B

• “Break the line, change the sign”

[12]

(A + B + C)(A + B + C) = A + B + C + A + B + C =

A B C + A B C = ABC + ABC = AB(C + C) = AB

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

More theorems: De Morgan’s Law

• One of the more advanced theorems I’ll cover here is called De
Morgan’s Law, which lets you distribute inversion operations

• In my opinion, it’s easier to visualize using set theory, which you can
see on the right

• In the first part of the picture, you can read it as “everything that’s
not in A or B is the same as everything that’s not in A combined
with everything not in B”

• Similarly, in the bottom picture, you can read it as “everything not
in the intersection of A and B is the same as everything not in A
combined with everything not in B”

• A way to remember how to do it: “Break the line, change the sign”

• Here’s a good example of why this is so useful: you could FOIL out
those terms, find all the like terms, etc., but De Morgan’s is so
much easier and faster to do

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

Davis Claiborne Open Source Digital Logic Design 11 / 28

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Optimization technique 2: K-maps

• Karnaugh maps, usually called K-maps, are another tool that you
can use to help reduce logic expressions

• The basic concept is to rearrange the truth table such that only one
of the inputs changes as you change columns or rows, even when
you wrap around

• That’s a little jargony, so it’s easier to look at an example; let’s put
the first truth table into a k-map

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

Davis Claiborne Open Source Digital Logic Design 11 / 28

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Optimization technique 2: K-maps

• I’ve color coded the items to help show the transformation

• Reading these is a lot like consulting a table; for a given row or
column, the specified value of X applies

• Now that the items are in the table, you can circle groups of
contiguous 1s that are a power of two size and rectangular,
maximizing the size of each grouping

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

Davis Claiborne Open Source Digital Logic Design 11 / 28

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Optimization technique 2: K-maps

• For instance, here the first row has 2 1s in a rectangle; since 2 is a
power of 2, you can group them

• Each grouping corresponds to a part of the final expression

• You can find that expression by looking at the columns and rows
shared and doing some optimizations

• This may seem like optimization 1 with extra steps, but the main
advantage of this is that it’s fast, reliable, and easy to do

• The reason this works is precisely because of the way the table was
layed out - by only changing one term at a time, it makes logic
simplifications always reduce (when done properly)

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

Davis Claiborne Open Source Digital Logic Design 11 / 28

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Optimization technique 2: K-maps

• Now let’s look at a more complicated case. This one’s a bit tricker
to set up - notice how in the third row it goes from 01 to 11 in -
this is so that only one term changes at once

• After filling in the table, we can do the same process as before: find
rectangular power of 2-size groups of 1

• And remember: you can wrap “around” the top and bottom or left
and right of the table, since it’s still only one term that’s changing,
and you always want to go for the largest groupings possible

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC

Davis Claiborne Open Source Digital Logic Design 11 / 28

Optimization technique 2: K-maps

X Y Z
0 0 1
0 1 0
1 0 1
1 1 0

Y
X

0 1

0 1 1
1 0 0

Z = Y (X + X) = Y

A B C Z
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

BC
A

0 1

00 0 1
01 0 0
11 1 1
10 1 1

Z = B + AC20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Optimization technique 2: K-maps

• Here’s the final result for that grouping

• There’s a few things to notice here:

• First, notice how the blue grouping wrapped around the top and
bottom, becoming term A C’

• As an aside, this is part of the reason why I think it’s actually easier
to think of this as a sphere, though that’s harder to show

• Next, notice how larger groups are preferred: the red block could
have been two distinct blocks of 2 each, but since it would simplify
out anyways, it’s easier to have a single block

• Finally, notice how ABC’ is in two groups, B’ and AC’. At first,
covering it twice might seem like a waste. But counting it twice
actually allows us to simplify: instead of AB’C’ we can have just AC’.

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

3D K-maps: AKA when did this become topography?

4 variables:

[13]

Davis Claiborne Open Source Digital Logic Design 12 / 28

3D K-maps: AKA when did this become topography?

4 variables:

[13]

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

3D K-maps: AKA when did this become
topography?

• Beyond 4 variables in a K-map, you have to do some fiddling around
to get the topopgrahy to cooperate properly

• One of the simplest ways to do this is to overlay two matrices on
top of each other

• If these maps get too much larger, you run into an issue, as you
either won’t get the most efficient possible expression anymore or
you’ll get an incorrect expression depending on how the terms are
laid out

• This is another reason I prefer thinking of K-maps as curved shapes
shapes like cylinders, spheres, and toruses, as they implicitly remind
you of the limitations of these representations

• Excuse the mostly horrible images drawn by me... these things are
well beyond my tikz-fu

Digital Logic
Verilog

Software

Boolean algebra
Finite State Machines
Optimization

Beyond six variables: Try not to
8 variables1:

[10]
1 Technically, this is a Karnaugh-Veitch chart, but whatever

Davis Claiborne Open Source Digital Logic Design 13 / 28

Beyond six variables: Try not to
8 variables1:

[10]
1 Technically, this is a Karnaugh-Veitch chart, but whatever

20
21

-0
8-

31
Open Source Digital Logic Design

Digital Logic
Optimization

Beyond six variables: Try not to

• There is a limit to how useful a K-map can become; after a certain
point, it becomes more academic than practical in my opinion

• All the mirroring, odd group sizes, etc., make this pretty tedious to
do

• This about wraps up all that I really feel I need to cover for digital
logic for now - there’s a lot more that I could cover, but you’re not
prepping for the FE exam or anything, so I’ll leave it here for now

• In case you’re curious about how expressions with more than six
variables are optimized...

• There are other tools to aid performing this process by hand, like
Reduced Karnaugh maps, but it’s mostly reserved for computers,
who are much better at doing tedious things, both in terms of speed
and error rate

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Specifying the circuit

• Need to specify logic circuit to computer

• “Compiling” (+synthesis) optimizes logic

• Hardware description languages:
• Verilog
• VHDL (VHSIC (Very High Speed Integrated Circuit) HDL)

Davis Claiborne Open Source Digital Logic Design 14 / 28

Specifying the circuit

• Need to specify logic circuit to computer

• “Compiling” (+synthesis) optimizes logic

• Hardware description languages:
• Verilog
• VHDL (VHSIC (Very High Speed Integrated Circuit) HDL)20

21
-0

8-
31

Open Source Digital Logic Design
Verilog

Overview
Specifying the circuit

• The first step into getting computers to do the optimization work
for you is... telling the computer what your circuit is

• Parts of this process can be considered fairly similar to what a
compiler is doing as it optimizes your code; this is usually done
during the synthesis step

• There are a few major ways to specify your circuit, the most
common being what are called “Hardware description languages,” or
HDLs, like Verilog and VHDL

• For this presentation, I’ll talk about Verilog, just because I know the
most about it, though both HDLs see wide use

Digital Logic
Verilog

Software

Overview
Syntax
Testing

What is Verilog?

• HDL with C-like syntax

• Two parts of language:
• Synthesizable: Can be represented as circuit
• Unsynthesizable: Exists for logic verification

• Non-linear execution

Davis Claiborne Open Source Digital Logic Design 15 / 28

What is Verilog?

• HDL with C-like syntax

• Two parts of language:
• Synthesizable: Can be represented as circuit
• Unsynthesizable: Exists for logic verification

• Non-linear execution20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Overview

What is Verilog?

• Verilog is a hardware description language designed with a C-like
syntax

• Verilog can be broken down into two key parts: synthesizable and
unsynthesizable

• The synthesizable portion of Verilog is what’s used to optimize the
logic expressions mentioned earlier

• The unsynthesizable part is used to help test your circuits to ensure
they’re doing what you want

• One important thing to keep in mind when working with Verilog is
that it’s not a traditional programming language, because it does
not run linearly

• This can be hard to wrap your head around at first, but it’s
important to remember this, because the code is describing a
circuit, which (of course) does not run linearly

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Basic syntax
Terminology:

• Module: logic circuit; functions
• Port: inputs/outputs to module; parameters

module and_behavioral(

input wire a, b, // Input ports

output reg z // Output ports

);

// always @(): Reevaluate any time a or b changes

// Think of this like a while-true that only executes when its inputs change

always @(a or b) begin

// 1'b1: one bit long number binary 1

// &&: logical and

// begin: {; end: }

if (a == 1'b1 && b == 1'b1) begin

z = 1'b1;

end

else begin

z = 1'b0;

end

end

endmodule

Davis Claiborne Open Source Digital Logic Design 16 / 28

Basic syntax
Terminology:

• Module: logic circuit; functions
• Port: inputs/outputs to module; parameters

module and_behavioral(

input wire a, b, // Input ports

output reg z // Output ports

);

// always @(): Reevaluate any time a or b changes

// Think of this like a while-true that only executes when its inputs change

always @(a or b) begin

// 1'b1: one bit long number binary 1

// &&: logical and

// begin: {; end: }

if (a == 1'b1 && b == 1'b1) begin

z = 1'b1;

end

else begin

z = 1'b0;

end

end

endmodule

20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Syntax

Basic syntax

• First, let’s start off with some basic terminology:

• In Verilog, any time someone says “module,” you can think of it as if it were a function in a normal
programming language

• Any time someone says “port,” they mean the inputs and outputs of a module, which can be thought of as
the parameters to a function

• Now, let’s start looking at the code itself

• This code creates a module called “and_behavioral,” which has two inputs, a and b, and an output, z

• Notice that the output is a reg: confusingly, this is different from the register memory storage elements

• Right off the bat, I’m throwing a kind of tricky piece of syntax at you: “always @” statements are used to
constantly reevaluated every time one of the inputs changes

• You can think of this like an infinite loop that only runs if one of its inputs has changed

• Inside this block, we have an if-else statement

• To read the conditional, it’s important to know that 1'b1 is just Verilog’s way of saying “a one-bit value of
binary 1”

• One unusual part of Verilog’s syntax is that it eschews the use of curly braces for “begin” and “end” instead

• If you’re wondering about the difference between a wire or a reg, don’t worry - I’ll get to it

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Different styles of Verilog
Gate-level: Define circuit by basic logic gates; uses gate primitives
Dataflow: Define circuit by function; uses built-in operators
Behavioral: Define circuit by output; uses if/else/switch/etc.

// Port types in-module

module and_gatelevel(a, b, z);

input wire a, b;

output wire z;

// Gate-level

// Name of and gate is `u1`

AND u1 (z, a, b);

endmodule

// Port types as parameters

module and_dataflow(

input wire a, b,

output wire z

);

// Dataflow

assign z = a & b;

endmodule

// Port types as parameters

module and_behavioral(

input wire a, b,

output reg z

);

// Behavioral

always @(a or b) begin

if (a == 1'b1 && b == 1'b1) begin

z = 1'b1;

end

else begin

z = 1'b0;

end

end

endmodule

Davis Claiborne Open Source Digital Logic Design 17 / 28

Different styles of Verilog
Gate-level: Define circuit by basic logic gates; uses gate primitives
Dataflow: Define circuit by function; uses built-in operators
Behavioral: Define circuit by output; uses if/else/switch/etc.

// Port types in-module

module and_gatelevel(a, b, z);

input wire a, b;

output wire z;

// Gate-level

// Name of and gate is `u1`

AND u1 (z, a, b);

endmodule

// Port types as parameters

module and_dataflow(

input wire a, b,

output wire z

);

// Dataflow

assign z = a & b;

endmodule

// Port types as parameters

module and_behavioral(

input wire a, b,

output reg z

);

// Behavioral

always @(a or b) begin

if (a == 1'b1 && b == 1'b1) begin

z = 1'b1;

end

else begin

z = 1'b0;

end

end

endmodule

20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Syntax

Different styles of Verilog

• Now that we have a basic understanding of Verilog’s syntax, lets look at some of the different styles you
can use

• First, take a look at and_gatelevel, which shows the gate-level style of Verilog

• This is the most intuitive for us EEs, since it breaks down the circuit into basic logic-gates

• Also note that this module is using in-module annotations; both versions are acceptable, but I prefer
annotating the ports as parameters because I find it less prone to mistakes

• Up next is and_dataflow, which demonstrates the dataflow style of Verilog.

• Dataflow can be considered a step-above gate-level in terms of abstraction; by using the built-in operators
you can abstract away thinking about low-level gates and instead focus on what the module is doing

• Finally, there’s behavioral, the highest abstraction-level. I showed this first because it’s the easiest for
programmers to think of; by defining the module just in terms of inputs and outputs, you can abstract
away virtually all parts of the circuit itself

• You may be asking yourself, “why bother with gate-level or dataflow when behavioral just does it all for
you?” And that’s a very fair question. Gate-level and dataflow are used today mostly for verification, since
synthesis tools create efficient enough chips for the vast majority of cases

• Essentially, it can be considered writing C/Java/etc. vs assembly

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Testing Verilog: Test benches
module and_tb; // _tb = test bench

reg a, b, // AND inputs

check; // Bit toggled to trigger check

wire z_dataflow, z_behavioral; // Outputs

// Creates modules to test

// .<x>(<y>) specifies that <y> should be assigned to port <x>

// Typically, module being tested is called DUT

and_dataflow add1(.a(a), .b(b), .z(z_dataflow));

and_behavioral add2(.a(a), .b(b), .z(z_behavioral));

// Shows outputs for manual checking

// More sophisticated checking methods exist

always @(check) begin

$display(

"Time: %d a: %b b: %b z df: %b z bh: %b",

$time, a, b, z_dataflow, z_behavioral

);

end

// Changes values

initial begin

// #<x> = Go forward <x> clock cycles; ~ = toggle bits

#1 a = 0; b = 0; check = 0; // Time: 1 a: 0 b: 0 z df: 0 z bh: 0

#1 a = 0; b = 1; check = ~check; // Time: 2 a: 0 b: 1 z df: 0 z bh: 0

#1 a = 1; b = 0; check = ~check; // Time: 3 a: 1 b: 0 z df: 0 z bh: 0

#1 a = 1; b = 1; check = ~check; // Time: 4 a: 1 b: 1 z df: 1 z bh: 1

end

endmodule

Davis Claiborne Open Source Digital Logic Design 18 / 28

Testing Verilog: Test benches
module and_tb; // _tb = test bench

reg a, b, // AND inputs

check; // Bit toggled to trigger check

wire z_dataflow, z_behavioral; // Outputs

// Creates modules to test

// .<x>(<y>) specifies that <y> should be assigned to port <x>

// Typically, module being tested is called DUT

and_dataflow add1(.a(a), .b(b), .z(z_dataflow));

and_behavioral add2(.a(a), .b(b), .z(z_behavioral));

// Shows outputs for manual checking

// More sophisticated checking methods exist

always @(check) begin

$display(

"Time: %d a: %b b: %b z df: %b z bh: %b",

$time, a, b, z_dataflow, z_behavioral

);

end

// Changes values

initial begin

// #<x> = Go forward <x> clock cycles; ~ = toggle bits

#1 a = 0; b = 0; check = 0; // Time: 1 a: 0 b: 0 z df: 0 z bh: 0

#1 a = 0; b = 1; check = ~check; // Time: 2 a: 0 b: 1 z df: 0 z bh: 0

#1 a = 1; b = 0; check = ~check; // Time: 3 a: 1 b: 0 z df: 0 z bh: 0

#1 a = 1; b = 1; check = ~check; // Time: 4 a: 1 b: 1 z df: 1 z bh: 1

end

endmodule

20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Testing

Testing Verilog: Test benches

• Now that we’ve written our Verilog module, we need a way to ensure that we’ve
written it correctly

• Verilog does this using what’s known as a test-bench

• Here you can see the basic layout of a testbench - it’s actually very similar to a
module

• That’s because it is a module, just without any ports/IO

• Here we create 3 regs: a and b, to hold the inputs to the adders, and check,
which we’ll use to trigger the output function

• We also create two wires, one for each of the outputs

• Next, the two modules are instantiated, add1 and add2, which are the dataflow
and behavioral versions of the modules we created earlier

• Traditionally, the module being tested will be given the name DUT, but since
two modules are being tested here, I can’t do that

• Next, the always@ statement triggers output showing the current state of the
circuit when check changes

• Finally, we have the code responsible for changing the values

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Automated test benches
module and_tb_selfchecking;

reg [1:0] inputs [3:0]; // 4 inputs, 2 bits each

reg outputs [3:0]; // 4 outputs, 1 bit each

reg a, b, clk, reset; // clk and reset are to prevent sim issues

wire z_dataflow, z_behavioral;

integer i, errors; // index for inputs/outputs, # errors

// Creates modules to test

and_dataflow add2(.a(a), .b(b), .z(z_dataflow));

and_behavioral add3(.a(a), .b(b), .z(z_behavioral));

// Pulses clock

always begin #5; clk = ~clk; end

// Initializes values

initial begin

inputs[0] = 2'b00; inputs[1] = 2'b01; inputs[2] = 2'b10; inputs[3] = 2'b11;

outputs[0] = 1'b0; outputs[1] = 1'b0; outputs[2] = 1'b0; outputs[3] = 1'b1;

errors = 0; i = 0; clk = 0;

reset = 1; #1 reset = 0;

end

// Assigns inputs; posedge means to only do it on the rising edge

// (only when it changes from 0 to 1)

always @(posedge clk) begin

#1 { a, b } = inputs[i]; // 'Unpacks' inputs[i] into a and b

end

// Continued

Davis Claiborne Open Source Digital Logic Design 19 / 28

Automated test benches
module and_tb_selfchecking;

reg [1:0] inputs [3:0]; // 4 inputs, 2 bits each

reg outputs [3:0]; // 4 outputs, 1 bit each

reg a, b, clk, reset; // clk and reset are to prevent sim issues

wire z_dataflow, z_behavioral;

integer i, errors; // index for inputs/outputs, # errors

// Creates modules to test

and_dataflow add2(.a(a), .b(b), .z(z_dataflow));

and_behavioral add3(.a(a), .b(b), .z(z_behavioral));

// Pulses clock

always begin #5; clk = ~clk; end

// Initializes values

initial begin

inputs[0] = 2'b00; inputs[1] = 2'b01; inputs[2] = 2'b10; inputs[3] = 2'b11;

outputs[0] = 1'b0; outputs[1] = 1'b0; outputs[2] = 1'b0; outputs[3] = 1'b1;

errors = 0; i = 0; clk = 0;

reset = 1; #1 reset = 0;

end

// Assigns inputs; posedge means to only do it on the rising edge

// (only when it changes from 0 to 1)

always @(posedge clk) begin

#1 { a, b } = inputs[i]; // 'Unpacks' inputs[i] into a and b

end

// Continued

20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Testing

Automated test benches

• There is a way to automate test benches so that you don’t need to
manually check if your outputs are right

• However, it’s much more complex, and very prone to simulation
issues caused by the non-sequential code operation

• Basically, some values in Verilog will change before others in an
indeterminate manner, so you need to carefully design your tests
around this fact

• I won’t spend a ton of time going over how this is constructed, since
it’s a bit complicated, but I just figured I’d mention that it is
possible to do

Digital Logic
Verilog

Software

Overview
Syntax
Testing

Automated test benches (cont)

always @(negedge clk) begin

if (~reset) begin

// !==: Special kind of compare; doesn't ignore X's (don't cares)

if (z_dataflow !== outputs[i]) begin

$display(

"dataflow %d failed: %d vs %d",

i, z_dataflow, outputs[i]

);

errors = errors + 1;

end

if (z_behavioral !== outputs[i]) begin

$display(

"behavioral %d failed: %d vs %d",

i, z_behavioral, outputs[i]

);

errors = errors + 1;

end

// Unless we have a test input of don't cares (which would be

// pretty unusual), this is a fine way to see if we're at the end

i = i + 1;

if (inputs[i] === 2'bx) begin

$display("Test completed with %d errors", errors);

$finish;

end

end

end

endmodule

Davis Claiborne Open Source Digital Logic Design 20 / 28

Automated test benches (cont)

always @(negedge clk) begin

if (~reset) begin

// !==: Special kind of compare; doesn't ignore X's (don't cares)

if (z_dataflow !== outputs[i]) begin

$display(

"dataflow %d failed: %d vs %d",

i, z_dataflow, outputs[i]

);

errors = errors + 1;

end

if (z_behavioral !== outputs[i]) begin

$display(

"behavioral %d failed: %d vs %d",

i, z_behavioral, outputs[i]

);

errors = errors + 1;

end

// Unless we have a test input of don't cares (which would be

// pretty unusual), this is a fine way to see if we're at the end

i = i + 1;

if (inputs[i] === 2'bx) begin

$display("Test completed with %d errors", errors);

$finish;

end

end

end

endmodule

20
21

-0
8-

31
Open Source Digital Logic Design

Verilog
Testing

Automated test benches (cont)

• More of the automated testing. I can go over this more at the end if
people are interested and there’s time

• A lot of the differences have to do with HDLs vs programming
languages, and how you don’t have control over when certain
expressions are evaluated

• There’s a lot of Verilog I haven’t even covered, like blocking vs
non-blocking, registers vs wires, and the finer points of Verilog’s
number representation and expansion, but I think this is enough for
now

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

Simulating Verilog—Option 1: Icarus

Website [6]

Basic usage:

$ iverilog -o out -s top file.v

• -o: Output executable; run this to
simulate

• -s: Top-level module to simulate (or all if
excluded)

$ vvp out

• Performs simulation

Icarus Verilog

Davis Claiborne Open Source Digital Logic Design 21 / 28

Simulating Verilog—Option 1: Icarus

Website [6]

Basic usage:

$ iverilog -o out -s top file.v

• -o: Output executable; run this to
simulate

• -s: Top-level module to simulate (or all if
excluded)

$ vvp out

• Performs simulation

Icarus Verilog
20

21
-0

8-
31

Open Source Digital Logic Design
Software

Simulation/Debugging
Simulating Verilog—Option 1: Icarus

• Now that we’ve written all this Verilog code, it’s time to actually
simulate it

• Tons of simulators exist, but most of them are closed-source, or
proprietary

• One that isn’t, however, is called “Icarus Verilog”

• I won’t go over installing it here, but I will give a quick overview of
how to use it

• (See slide)

• There’s a few more parts to this that I’ll talk about later, but this is
the gist of it

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

Simulating Verilog—Option 2: CVC

• Website [2]

• Compiles Verilog to x86

• Vs Icarus Verilog:
• Reportedly faster
• Natively supports writing matrices to wave files1

• Less-widely used
• Documentation is fairly sparse2

• Icarus: Create VHDL output; preprocessors

• CVC: Explicit optimization control

1
https://stackoverflow.com/a/22395232/2238176

2
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/

oss-cvc-quick-start-061014.pdf

Davis Claiborne Open Source Digital Logic Design 22 / 28

https://stackoverflow.com/a/22395232/2238176
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/oss-cvc-quick-start-061014.pdf
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/oss-cvc-quick-start-061014.pdf

Simulating Verilog—Option 2: CVC

• Website [2]

• Compiles Verilog to x86

• Vs Icarus Verilog:
• Reportedly faster
• Natively supports writing matrices to wave files1

• Less-widely used
• Documentation is fairly sparse2

• Icarus: Create VHDL output; preprocessors

• CVC: Explicit optimization control

1
https://stackoverflow.com/a/22395232/2238176

2
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/

oss-cvc-quick-start-061014.pdf

20
21

-0
8-

31
Open Source Digital Logic Design

Software
Simulation/Debugging

Simulating Verilog—Option 2: CVC

• Another option for simulating Verilog is CVC

• CVC compiles your verilog to x86 instructions to simulate, which reportedly
improves speed, though I didn’t bother checking this myself

• Another advantage of CVC over Icarus is that it can write matrix variables to
wavefiles without having to do a workaround

• There are some downsides, however:

• CVC is less-widely used than Icarus, making support for it harder to find

• Documentation in general is pretty sparse: their website itself doesn’t even have
the documentation; it apparently comes with the code, but can also be found
mirrored on GitHub

• Finally, each simulator has some different options

• Icarus can convert your Verilog to VHDL, and can also extend Verilog’s
functionality by adding preprocessor

• While Icarus does optimization, CVC gives you more explicit control of which
optimizations to do

https://stackoverflow.com/a/22395232/2238176
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/oss-cvc-quick-start-061014.pdf
https://raw.githubusercontent.com/cambridgehackers/open-src-cvc/master/doc/oss-cvc-quick-start-061014.pdf

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

GTKWave

Waveform viewer

Export wavefiles:

initial begin

$dumpfile("waves.vcd");

$dumpvars; // write all vars

end

More efficient wavefiles:
$ vvp out -fst

CVC-specific:

initial begin

$fstDumpfile("waves.fst");

$fstDumpvars; // write all vars

end

$ cvc +dump_arrays and.v

GTKWave’s incredible logo

[6]

Davis Claiborne Open Source Digital Logic Design 23 / 28

GTKWave

Waveform viewer

Export wavefiles:

initial begin

$dumpfile("waves.vcd");

$dumpvars; // write all vars

end

More efficient wavefiles:
$ vvp out -fst

CVC-specific:

initial begin

$fstDumpfile("waves.fst");

$fstDumpvars; // write all vars

end

$ cvc +dump_arrays and.v

GTKWave’s incredible logo

[6]20
21

-0
8-

31
Open Source Digital Logic Design

Software
Simulation/Debugging

GTKWave

• GTKWave is a free, open-source waveform viewer with one of the
best logos I’ve ever seen

• In case you don’t know what a waveform viewer is, it’s basically just
a graphical way to view the relationship between signals

• Verilog has builtin commands for exporting wave files: $dumpfile
specifies the file to write to, and $dumpvars specifies which
variables to write (writes all by default)

• Additionally, most simulators offer support for more efficient
wavefiles

• For instance, with Icarus, using vvp with the -fst flag to specify
that wavefiles should be fsts

• For CVC, you need to explicitly use their fst-specific commands; the
dump_arrays option includes arrays in wavefiles

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

GTKWave in action

Davis Claiborne Open Source Digital Logic Design 24 / 28

GTKWave in action

20
21

-0
8-

31
Open Source Digital Logic Design

Software
Simulation/Debugging

GTKWave in action

• Here you can GTKWave viewing the dumbed variables from the
self-checking testbench

• The idea is basically to mimic an oscilloscope

• It’s fairly intuitive and easy to use, without any real “gotchas” in
my opinion, so I won’t spend too long on it

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

Qflow

• Open source “digital synthesis flow”

• Most problematic tool
• May just be my lack of experience

• Combines other tools:
• yosys: Verilog synthesis/optimization
• graywolf: Placement tool
• qrouter: Routing tool

Qflow [7]

Davis Claiborne Open Source Digital Logic Design 25 / 28

Qflow

• Open source “digital synthesis flow”

• Most problematic tool
• May just be my lack of experience

• Combines other tools:
• yosys: Verilog synthesis/optimization
• graywolf: Placement tool
• qrouter: Routing tool

Qflow [7]20
21

-0
8-

31
Open Source Digital Logic Design

Software
Synthesis

Qflow

• Now onto synthesis - which is the process of turning your module
into a real circuit

• The best Open Source synthesis tool I’ve found so far is Qflow

• That being said, I still run into a lot of errors with this tool, so I’d
definitely say it’s the biggest problem area

• However, it is also the tool I have the least experience with, since I
normally have to use closed-source versions of tools for my classes

• From my understanding, Qflow is basically a wrapper around a
series of other open source tools, like yosys, graywolf, qrouter and
more in an attempt to automate the process

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

Installation issues

Note: These issues were present as of August 31, 2021; some of
these issues will likely be fixed upstream in the coming months

• Graywolf: Compilation issue due to globals1

• netgen: Compilation issue due to security flag2

• Qflow: Bad ABC symlink3

1
https://github.com/rubund/graywolf/issues/43

2
https://aur.archlinux.org/packages/netgen-lvs-git/#comment-822826

3
https://stackoverflow.com/questions/36593907/

Davis Claiborne Open Source Digital Logic Design 26 / 28

https://github.com/rubund/graywolf/issues/43
https://aur.archlinux.org/packages/netgen-lvs-git/#comment-822826
https://stackoverflow.com/questions/36593907/

Installation issues

Note: These issues were present as of August 31, 2021; some of
these issues will likely be fixed upstream in the coming months

• Graywolf: Compilation issue due to globals1

• netgen: Compilation issue due to security flag2

• Qflow: Bad ABC symlink3

1
https://github.com/rubund/graywolf/issues/43

2
https://aur.archlinux.org/packages/netgen-lvs-git/#comment-822826

3
https://stackoverflow.com/questions/36593907/

20
21

-0
8-

31
Open Source Digital Logic Design

Software
Synthesis

Installation issues

• While installing Qflow and its associated packages, I ran into a few
errors that you should be aware of if you want to try this yourself

• Hopefully, these issues will be fixed in the coming months; I found
two of them and their fixes myself, and plan on reporting them once
I have some more information

• The first issue is with Graywolf; some global values are defined
twice; the temporary fix involves just updating the makefile to
resolve the issue

• The next issue I ran into was with installing netgen; it was also a
compilation issue, where the temporary fix was also just updating
the makefile

• The final issue I ran into during installation was with Qflow, which
apparently assumes the location of ABC, so it creates a symlink to
the wrong location. This can be fixed simply by figuring out where
ABC actually installed and updating the symlink.

https://github.com/rubund/graywolf/issues/43
https://aur.archlinux.org/packages/netgen-lvs-git/#comment-822826
https://stackoverflow.com/questions/36593907/

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

Results
Results from following tutorial1:

If your design is too simple, you’ll run into errors2
1

http://opencircuitdesign.com/qflow/tutorial.html
2

http://opencircuitdesign.com/pipermail/eda-dev/2021-August/thread.html

Davis Claiborne Open Source Digital Logic Design 27 / 28

http://opencircuitdesign.com/qflow/tutorial.html
http://opencircuitdesign.com/pipermail/eda-dev/2021-August/thread.html

Results
Results from following tutorial1:

If your design is too simple, you’ll run into errors2
1

http://opencircuitdesign.com/qflow/tutorial.html
2

http://opencircuitdesign.com/pipermail/eda-dev/2021-August/thread.html

20
21

-0
8-

31
Open Source Digital Logic Design

Software
Synthesis

Results

• Once you’ve got Qflow installed, you can follow the tutorial to see
what the chip would look like

• You should not that it’s not just a fire and forget process, as some
parameters will need to be tweaked depending on what you’re doing

• For instance, while trying to synthesize the simple and module we’ve
been using through this presentation, I ran into errors

• This basically happened because the design was so small that it
couldn’t place power or ground properly. So just keep in mind that
you will need to tweak some things to get it to work.

http://opencircuitdesign.com/qflow/tutorial.html
http://opencircuitdesign.com/pipermail/eda-dev/2021-August/thread.html

Digital Logic
Verilog

Software

Simulation/Debugging
Synthesis

More software/resources

In no particular order:

• OpenROAD: Attempt at fully automated EDA [9]

• Verilator: Compiles Verilog to C++; considered using it, but
tests need to also be done in C++ [8]

• Electric: Integrated-Circuit design tool [5]

• Circuit_macros: Tool for producing typeset schematics [1]

• Digital: Java-based tool for designing and simulating digital
logic [3]

• DigitalJS: Online interactive Verilog tool [4]

Davis Claiborne Open Source Digital Logic Design 28 / 28

More software/resources

In no particular order:

• OpenROAD: Attempt at fully automated EDA [9]

• Verilator: Compiles Verilog to C++; considered using it, but
tests need to also be done in C++ [8]

• Electric: Integrated-Circuit design tool [5]

• Circuit_macros: Tool for producing typeset schematics [1]

• Digital: Java-based tool for designing and simulating digital
logic [3]

• DigitalJS: Online interactive Verilog tool [4]

20
21

-0
8-

31
Open Source Digital Logic Design

Software
Synthesis

More software/resources

• Of course, the software I’ve shown off here isn’t the only software that exists

• There are a bunch of open source tools that I didn’t show off, or just don’t know about or use

• The first one, OpenROAD, from what I can tell is an attempt to make a fully automated HDL to hardware
pipeline; I have not tried it out yet, but intend to give it a try soon

• Verilator is a Verilog simulator that simulates by converting the Verilog to C++; I considered using this,
and it does look interesting, but to use it you need to write your tests in C++, since it only supports
converting the synthesizable subset of Verilog; I may check it out in the future, but for now CVC works
well enough

• Electric is an entire suite for designing ICs; I hadn’t heard about it until recently, but it looks pretty neat;
from what I can tell, it doesn’t support synthesizing from Verilog, but it looks like a useful tool for other
hardware design needs

• Circuit_macros is the tool I used to produce all the logic gates for this presentation; it’s basically like
graphviz for circuits, although not quite as automated as I’d like it to be

• Digital and DigitalJS are both interactive tools for designing digital logic; Digital includes logic optimization
tools, while DigitalJS runs in-browser and can read Verilog, which can be useful for debugging modules

References I

Software
[1] Circuit_macros—Typesetting tool for producing schematics

https://ece.uwaterloo.ca/~aplevich/Circuit_macros/

[2] CVC—Verilog simulator that compiles to x86 for speed
http://www.tachyon-da.com/what-is-cvc/

[3] Digital—Tool for digital logic design/simulation
https://github.com/hneemann/Digital

[4] DigitalJS—Online tool for viewing Verilog
http://digitaljs.tilk.eu/

[5] Electric—Integrated-Circuit Design system
https://www.staticfreesoft.com/index.html

[6] gEDA Projects—Collection of GPLd EDA tools, including Icarus Verilog and GTKWave
http://www.geda-project.org/

[7] Open Circuit Design—Collection of open-source EDA tools, including Qflow
http://opencircuitdesign.com/

[8] Verilator—Verilog transpiler to C++
https://www.veripool.org/verilator/

[9] OpenROAD—Goal is to make fully automated HDL to hardware pipeline
https://theopenroadproject.org/

Websites
[10] Karnaugh-Veitch Map—Performs groupings for 4 to 8 variable k-maps

https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/

Images

https://ece.uwaterloo.ca/~aplevich/Circuit_macros/
http://www.tachyon-da.com/what-is-cvc/
https://github.com/hneemann/Digital
http://digitaljs.tilk.eu/
https://www.staticfreesoft.com/index.html
http://www.geda-project.org/
http://opencircuitdesign.com/
https://www.veripool.org/verilator/
https://theopenroadproject.org/
https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/

References II

[11] Claude Shannon
https://en.wikipedia.org/wiki/Claude_Shannon#/media/File:ClaudeShannon_MFO3807.jpg

[12] De Morgan’s law
https://upload.wikimedia.org/wikipedia/commons/0/06/Demorganlaws.svg

[13] K-map on a torus
https://upload.wikimedia.org/wikipedia/commons/3/33/Karnaugh_map_torus.svg

https://en.wikipedia.org/wiki/Claude_Shannon#/media/File:ClaudeShannon_MFO3807.jpg
https://upload.wikimedia.org/wikipedia/commons/0/06/Demorganlaws.svg
https://upload.wikimedia.org/wikipedia/commons/3/33/Karnaugh_map_torus.svg

	Digital Logic
	Boolean algebra
	Finite State Machines
	Optimization

	Verilog
	Overview
	Syntax
	Testing

	Software
	Simulation/Debugging
	Synthesis

