
rsync
Making backups with rsync

Davis Claiborne

LUG @ NC State

November 10, 2020

Introduction
rsync

Wrap-up

Wants
Caveats

What I want from my backups

• Fast and easy to do

• < 15 minutes to finish
• Run in background

• Easy to access

• Plug and play

• Full control

• No wasted space

Davis Claiborne rsync 1 / 7

What I want from my backups

• Fast and easy to do

• < 15 minutes to finish
• Run in background

• Easy to access

• Plug and play

• Full control

• No wasted space

20
20

-1
1-

10
rsync

Introduction
Wants

What I want from my backups

• Before I get into how I make my backups, I want to talk a bit about
what I want to get out of my backups

• I have three main desires: the process of making a backup should be
fast and easy to do, I should be able to easily access the files once
they’re backed up, and I want to have full control over what is and
isn’t backed up

Introduction
rsync

Wrap-up

Wants
Caveats

What I want from my backups

• Fast and easy to do
• < 15 minutes to finish
• Run in background

• Easy to access
• Plug and play

• Full control
• No wasted space

Davis Claiborne rsync 1 / 7

What I want from my backups

• Fast and easy to do
• < 15 minutes to finish
• Run in background

• Easy to access
• Plug and play

• Full control
• No wasted space20

20
-1

1-
10

rsync
Introduction

Wants
What I want from my backups

• Let me be a bit more specific: when I say I want my backups to be
fast and easy to do, I want to be able to start a backup and have it
done in less than 15 minutes.

• Ideally, it should be able to just run in the background without me
noticing and be over pretty quickly.

• When I say it should be easy to access, I should be able to plug in
my backup medium and access files immediately

• Finally, by having full control, I mean that I don’t want to waste
time or space backing up files I don’t care about

Introduction
rsync

Wrap-up

Wants
Caveats

Some caveats

• Just my setup - might not work for you

• Probably can adapt it

• Some issues

Davis Claiborne rsync 2 / 7

Some caveats

• Just my setup - might not work for you

• Probably can adapt it

• Some issues

20
20

-1
1-

10
rsync

Introduction
Caveats

Some caveats

• Obviously this should go without saying, but this is just the way
that I do this

• There’s sure to be some kind of issue with my setup that might not
work with the way you do things

• That being said, with a bit of effort you can probably adapt my
script to meet your needs

• There are some issues with it, though, that I’m not sure how to
address - I’ll get to these later

Introduction
rsync

Wrap-up

Overview
Use

What is rsync?

• Copies files

• Originally for syncing with remote systems

• Delta-based changes

Davis Claiborne rsync 3 / 7

What is rsync?

• Copies files

• Originally for syncing with remote systems

• Delta-based changes

20
20

-1
1-

10
rsync

rsync
Overview

What is rsync?

• rsync is tool for copying files

• Originally intended to be used for remote connections (like scp)

• Because it was originally intended for use with remote systems, one
of its goals was to only change files that it needed to

• It does this by a) only updating files that are newer on the source
system and b) doing ”delta-based” changes - only changing what is
needed

• This makes it much faster than just blindly re-copying every file
every time

Introduction
rsync

Wrap-up

Overview
Use

The script

Gets all native packages.

echo Storing native packages

native_packages="$(pacman --query --explicit --native --quiet --unrequired)"

format_package_list "$native_packages" > $backup_dir/pacman-native-packages.txt

Gets a list of all foreign packages.

echo Storing foreign packages...

foreign_packages="$(pacman --query --explicit --foreign --quiet --unrequired)"

echo "$foreign_packages" > $backup_dir/pacman-foreign-packages.txt

Performs backup

echo Performing backup

rsync --archive --verbose --human-readable --progress --cvs-exclude \

--exclude='/VirtualBox VMs' \

--exclude='/temp' \

--exclude='/dotfiles' \

--exclude='.*' \

--exclude='_minted*' \

--exclude='CMakeFiles' \

--exclude='__pycache__' \

$directory $backup_dir

See full script here [2]

Davis Claiborne rsync 4 / 7

The script

Gets all native packages.

echo Storing native packages

native_packages="$(pacman --query --explicit --native --quiet --unrequired)"

format_package_list "$native_packages" > $backup_dir/pacman-native-packages.txt

Gets a list of all foreign packages.

echo Storing foreign packages...

foreign_packages="$(pacman --query --explicit --foreign --quiet --unrequired)"

echo "$foreign_packages" > $backup_dir/pacman-foreign-packages.txt

Performs backup

echo Performing backup

rsync --archive --verbose --human-readable --progress --cvs-exclude \

--exclude='/VirtualBox VMs' \

--exclude='/temp' \

--exclude='/dotfiles' \

--exclude='.*' \

--exclude='_minted*' \

--exclude='CMakeFiles' \

--exclude='__pycache__' \

$directory $backup_dir

See full script here [2]

20
20

-1
1-

10
rsync

rsync
Use

The script

• Here’s the main portion of my backup script
• You can read the rest of the script online, but it’s mostly just simple

flag parsing, setting variables, and other misc functions
• It’s basically doing two things here: storing all the packages I have

installed and starting the actual backup
• Let’s take a look at a few of these flags:

– archive: Basically, keep all files, permissions, etc.
– verbose: Output lots of information
– human-readable: Make numbers easier to read
– progress: Show progress on file updates
– cvs-exclude: Ignore most temp programming files
– excludes: Keep out stuff I don’t want backed up

• archive is the most useful flag: it tells rsync to copy all the files
(and the structure) of the source to the dest

Introduction
rsync

Wrap-up

Overview
Use

The script

Gets all native packages.

echo Storing native packages

native_packages="$(pacman --query --explicit --native --quiet --unrequired)"

format_package_list "$native_packages" > $backup_dir/pacman-native-packages.txt

Gets a list of all foreign packages.

echo Storing foreign packages...

foreign_packages="$(pacman --query --explicit --foreign --quiet --unrequired)"

echo "$foreign_packages" > $backup_dir/pacman-foreign-packages.txt

Performs backup

echo Performing backup

rsync --archive --verbose --human-readable --progress --cvs-exclude \

--exclude='/VirtualBox VMs' \

--exclude='/temp' \

--exclude='/dotfiles' \

--exclude='.*' \

--exclude='_minted*' \

--exclude='CMakeFiles' \

--exclude='__pycache__' \

$directory $backup_dir

See full script here [2]

Davis Claiborne rsync 4 / 7

The script

Gets all native packages.

echo Storing native packages

native_packages="$(pacman --query --explicit --native --quiet --unrequired)"

format_package_list "$native_packages" > $backup_dir/pacman-native-packages.txt

Gets a list of all foreign packages.

echo Storing foreign packages...

foreign_packages="$(pacman --query --explicit --foreign --quiet --unrequired)"

echo "$foreign_packages" > $backup_dir/pacman-foreign-packages.txt

Performs backup

echo Performing backup

rsync --archive --verbose --human-readable --progress --cvs-exclude \

--exclude='/VirtualBox VMs' \

--exclude='/temp' \

--exclude='/dotfiles' \

--exclude='.*' \

--exclude='_minted*' \

--exclude='CMakeFiles' \

--exclude='__pycache__' \

$directory $backup_dir

See full script here [2]

20
20

-1
1-

10
rsync

rsync
Use

The script

• Let’s explain some of the excludes a bit

• The syntax is pretty similar to, say, a .gitignore file

• The leading slash on the first 3 means to only ignore those files at
the root level

• The rest of the file are ignored everywhere and follow standard shell
expansion options (.* for all files/directories that start with a ., for
example)

• Most of them are pretty obvious: don’t include temp files, output
from compilation processes, etc.

• But why not dotfiles? The answer is pretty simple: if I care about
them, they’re already backed up in my dotfiles repo

Introduction
rsync

Wrap-up

Pros/cons
Solutions

Pros

• Fast

• Easy

• Painless

• Flexible

Davis Claiborne rsync 5 / 7

Pros

• Fast

• Easy

• Painless

• Flexible20
20

-1
1-

10
rsync

Wrap-up
Pros/cons

Pros

• With that being said, I’ll close with what I like and dislike about this
setup

• The main things I like about it are how quick, easy, and painless it
is to use: I just plug in my flash drive, run the script, and don’t
think about it

• One other advantage is that it’s super easy to swap where/how you
store your backups without changing anything else. Rsync even has
a flag specifically for syncing with remote servers that compresses
the data before transmitting it

Introduction
rsync

Wrap-up

Pros/cons
Solutions

Cons

• Duplicated files/buildup

• Not two-way

• Issues scaling

Davis Claiborne rsync 6 / 7

Cons

• Duplicated files/buildup

• Not two-way

• Issues scaling

20
20

-1
1-

10
rsync

Wrap-up
Pros/cons

Cons

• There are some downsides, however

• One big problem with it is that files can easily get duplicated:
because of the way rsync works, it doesn’t attempt to detect if a file
has moved versus it just being a new file

• This means that if you move a file between syncs, you can get
multiple copies of the same file

• This also means that files you’ve deleted stay on your backup. Most
of the time this is useful, but it can lead to certain scenarios where
deleted files (you no longer need) take up most of your backup

• It’s also not a two-way backup. This means that you can only
modify one of the sources. This isn’t a big deal for most use cases,
but it would be nice to have for some scenarios (for instance,
syncing music/pictures between phone, where I may edit tags, etc.)

Introduction
rsync

Wrap-up

Pros/cons
Solutions

Cons

• Duplicated files/buildup

• Not two-way

• Issues scaling

Davis Claiborne rsync 6 / 7

Cons

• Duplicated files/buildup

• Not two-way

• Issues scaling

20
20

-1
1-

10
rsync

Wrap-up
Pros/cons

Cons

• Finally, there’s the issue of size: what happens if your backup size
outgrows your storage device? Obviously, you can always buy a
larger drive, but it’d be nice to be able to have it split itself across
multiple drives automatically or something

• This solution, unfortunately, doesn’t handle things like this very well
natively.

Introduction
rsync

Wrap-up

Pros/cons
Solutions

Possible solutions

• Duplicate files: fdupes [3]

• File buildup: Manual moving

• Two-way: Unison [4]

• Scaling:
• Filesystem
• Virtual filesystem
• Manual partitioning

Davis Claiborne rsync 7 / 7

Possible solutions

• Duplicate files: fdupes [3]

• File buildup: Manual moving

• Two-way: Unison [4]

• Scaling:
• Filesystem
• Virtual filesystem
• Manual partitioning20

20
-1

1-
10

rsync
Wrap-up

Solutions
Possible solutions

• While these are issues, most of them can be remedied, potentially
by using some other program

• For instance, the problem of duplicated files can be fixed by listing
duplicate files with fdupes. I prefer to have the output sorted by
date so I don’t have to sift through the same (intentional)
duplicates every time

• To fix file buildup, my main solution is just manually going through
and deleting files that I know I won’t need any more. But you could
do something more sophisticated, though, like deleting any files on
the backup older than a certain date, knowing that they’ll be synced
if they’re still on your current system and just hoping you won’t
need them anymore

• If you want two-way syncs, you could use a program calle unison.
I’ve never used it, but it supposedly is pretty good, albeit a little
slow

Introduction
rsync

Wrap-up

Pros/cons
Solutions

Possible solutions

• Duplicate files: fdupes [3]

• File buildup: Manual moving

• Two-way: Unison [4]

• Scaling:
• Filesystem
• Virtual filesystem
• Manual partitioning

Davis Claiborne rsync 7 / 7

Possible solutions

• Duplicate files: fdupes [3]

• File buildup: Manual moving

• Two-way: Unison [4]

• Scaling:
• Filesystem
• Virtual filesystem
• Manual partitioning20

20
-1

1-
10

rsync
Wrap-up

Solutions
Possible solutions

• Finally, scaling is probably the hardest issue to address, and honestly the
one I know the least about

• My backup hasn’t outgrown my flashdrive yet, but it almost certainly will
at some point, since my harddrive is 1 TB and my flashdrive is 64 gigs.

• One potential solution to this is to use a different file system that would
allow you to mount multiple flash drives as a single filesystem.

• Apparently btrfs can do this, though I’m not sure how it would work
(what happens if your system spans more than drives than you have
ports? Do they all need to be plugged in? etc.)

• Another potential solution is to use a virtual filesystem, then mount
drives as one point. Supposedly LVM can do this, but I’ve never tried it;
also suffers same problems as btrfs

• You could also manually break up the syncs across multiple drives if you
get to that point and just exclude them from others

References

[1] rsync man page
https://man7.org/linux/man-pages/man1/rsync.1.html

[2] Backup script
https://github.com/davisdude/dotfiles/blob/master/misc-scripts/backup

[3] fdupes
https://github.com/adrianlopezroche/fdupes

[4] Unison
https://www.cis.upenn.edu/~bcpierce/unison/

Davis Claiborne rsync 7 / 7

https://man7.org/linux/man-pages/man1/rsync.1.html
https://github.com/davisdude/dotfiles/blob/master/misc-scripts/backup
https://github.com/adrianlopezroche/fdupes
https://www.cis.upenn.edu/~bcpierce/unison/

	Introduction
	Wants
	Caveats

	rsync
	Overview
	Use

	Wrap-up
	Pros/cons
	Solutions

