
Terraform

William Harrell
8/8/20
LUG @ NC State



2

Cloud Infrastructure

● Many modern software companies don’t own their servers, and instead rent them 
from cloud providers

● Many resources are “serverless” or are less focused on a specific piece of hardware
● Networking elements (e.g. load balancers)
● Event driven executors (e.g. AWS Lambda)
● Storage (e.g. AWS S3)

● Hundreds of cloud providers, each with pros and cons
● Google Cloud Platform
● Azure
● AWS
● DigitalOcean
● Linode
● … and more, each with their own web consoles, CLIs, and APIs



3

Infrastructure as Code (IaC)

● Describe your infrastructure in a source file
● Keep all the infrastructure for a project in one file or folder, 

instead of having it scattered around pages in a web console
● Keep it stored in version control as a backup, revert to an old 

configuration when something goes wrong
● Platform specific IaC solutions already exist

● AWS CloudFormation (YAML)
● GCP Deployment Manager (Python)
● … but they can only manage resources on that platform



4

Terraform

● Write IaC for multiple providers in the 
same file/folder

● Wrapper on top of provider APIs
● Describe what you want – Terraform 

will figure out how to get there
● Written in Hashicorp Configuration 

Language
● Terraform itself is written in Go
● Available as a web interface, or 

through a CLI
● I’ll be focusing on the CLI



5

Project Structure

● *.tf – HCL specifying resources
● Terraform will combine all .tf files in current directory when executing

● .tfvars – Variable definitions
● .terraform/ - Downloaded providers and modules
● .tfstate – Most recent copy of the project’s state in the cloud

● Not used if a remote backend is used instead (more on this later)



6

The Four Commandments

● Plan – Generate a plan of what to do, but don’t execute it
● Apply – Generate a plan of what to do and execute it
● Show – View the current state of your resources
● Destroy – Delete all resources

● Apply and Destroy both ask for confirmation before making changes



7

Reuse

● Variables can be declared and referenced throughout the 
project, to reuse a set of resources for multiple, similar 
projects

● Variables can be defined through
● Project properties in Terraform Cloud
● Environment variables
● .tfvars files
● On the CLI as parameters or during execution (not recommended)



8

Modules

● If you want to share your configuration, you can turn it into a 
module

● Just move all your .tf files into a subdirectory
● Add input and output variables to really allow reuse
● Publish modules to Terraform Registry



9

Using existing resources

● Sometimes you want to reference a resource that already 
exists, without giving Terraform control of it
● Use a data block, and Terraform will grab information about it to be used 

throughout your script as though it was any other resource

● Other times, you want to import a resource into Terraform 
without having to destroy and rebuild
● Use “terraform import <HCL id> <provider id>” to bring the resource into the 

state



10

Terraform Online Co-op Mode

● Terraform files are easy to keep in source control and share 
with peers

● … but this is only the configuration, not the state of the 
resources which are also needed

● By default state is kept in .tfstate
● A remote backend can be used to store and share state

● e.g. AWS S3 bucket with DynamoDB table for locking


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

