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Cloud Infrastructure

● Many modern software companies don’t own their servers, and instead rent them 
from cloud providers

● Many resources are “serverless” or are less focused on a specific piece of hardware
● Networking elements (e.g. load balancers)
● Event driven executors (e.g. AWS Lambda)
● Storage (e.g. AWS S3)

● Hundreds of cloud providers, each with pros and cons
● Google Cloud Platform
● Azure
● AWS
● DigitalOcean
● Linode
● … and more, each with their own web consoles, CLIs, and APIs
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Infrastructure as Code (IaC)

● Describe your infrastructure in a source file
● Keep all the infrastructure for a project in one file or folder, 

instead of having it scattered around pages in a web console
● Keep it stored in version control as a backup, revert to an old 

configuration when something goes wrong
● Platform specific IaC solutions already exist

● AWS CloudFormation (YAML)
● GCP Deployment Manager (Python)
● … but they can only manage resources on that platform
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Terraform

● Write IaC for multiple providers in the 
same file/folder

● Wrapper on top of provider APIs
● Describe what you want – Terraform 

will figure out how to get there
● Written in Hashicorp Configuration 

Language
● Terraform itself is written in Go
● Available as a web interface, or 

through a CLI
● I’ll be focusing on the CLI
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Project Structure

● *.tf – HCL specifying resources
● Terraform will combine all .tf files in current directory when executing

● .tfvars – Variable definitions
● .terraform/ - Downloaded providers and modules
● .tfstate – Most recent copy of the project’s state in the cloud

● Not used if a remote backend is used instead (more on this later)
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The Four Commandments

● Plan – Generate a plan of what to do, but don’t execute it
● Apply – Generate a plan of what to do and execute it
● Show – View the current state of your resources
● Destroy – Delete all resources

● Apply and Destroy both ask for confirmation before making changes
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Reuse

● Variables can be declared and referenced throughout the 
project, to reuse a set of resources for multiple, similar 
projects

● Variables can be defined through
● Project properties in Terraform Cloud
● Environment variables
● .tfvars files
● On the CLI as parameters or during execution (not recommended)
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Modules

● If you want to share your configuration, you can turn it into a 
module

● Just move all your .tf files into a subdirectory
● Add input and output variables to really allow reuse
● Publish modules to Terraform Registry
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Using existing resources

● Sometimes you want to reference a resource that already 
exists, without giving Terraform control of it
● Use a data block, and Terraform will grab information about it to be used 

throughout your script as though it was any other resource

● Other times, you want to import a resource into Terraform 
without having to destroy and rebuild
● Use “terraform import <HCL id> <provider id>” to bring the resource into the 

state
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Terraform Online Co-op Mode

● Terraform files are easy to keep in source control and share 
with peers

● … but this is only the configuration, not the state of the 
resources which are also needed

● By default state is kept in .tfstate
● A remote backend can be used to store and share state

● e.g. AWS S3 bucket with DynamoDB table for locking
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