Programming with Ethereum

William Harrell
12/4/19
LUG @ NC State

Blockchain

* Linear collection of cryptographic data
* Run by independent nodes in a P2P manner

- Decentralized - No single node controls the
blockchain

 Transparency - Anyone can view the entire
blockchain

 Immutability - Once something is added to the
blockchain, it effectively cannot be changed or
removed

Ethereum Virtual Machine

« Ethereum programming languages compile
down to Ethereum Bytecode which runs on the
EVM

* Quasi-Turing complete language: computations
are bound by a transaction fee which is paid to
the miners

e Current fee is about $0.13 per transaction

* No non-deterministic functionality (such as
random())

Transaction Costs over Time

€| — Ethereum - Avg. Transaction Fee
3 5
-
g 4
i
S 3
g
= E
o
I_
o | | | METH |
=
<L 0 ETH 1 EH
Jan 2016 Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019

Proof of Stake

* Proof of Work method gobbles electricity -
maybe more than Switzerland
 Ethereum is moving to Proof of Stake

« A stake holder is randomly selected to verify a transaction,
with larger stake holders being favored

* The transaction is forged and added to the network

* The result can easily be checked. If the holder is caught
falsifying the transaction, they lose their stake and can’t forge
transactions anymore

« Easier for users with weaker hardware to
participate, increasing network strength

Smart Contracts

* Object-oriented programming adapted to the
blockchain

 Centered around the exchange of currency, but
can also store data in the blockchain

 Contracts cannot interact directly with the

outside environment

 Method for retrieving data from outside worid

A contract communicates with the oracle on the blockchain
and requests data from it

* Oracle retrieves the data from outside world

* Oracle calls a callback function on the original contract
 Provable, an oracle service, can retrieve:

 HTML/JSON/XML

« Random numbers

* WolframAlpha queries

* Resources on IPFS

Solidity

* Contract oriented language
* Similar style to JavaScript

* A contract is constructed and deployed to the
blockchain

* Other users can call public functions

LUG Coin

Boh.1r
contract LUGCoin {

mapping(address uint256) balances;
address owner;

modifier onlyOwner {
(owner);

}

constructor() public {
owner -
}

function () public {
balances[1++;
}

function () public view (uint256
balances[1
}

function (address , ulnt256) public onlyOwner {

balances[address] = new balance;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

