
Neat Features of Vim

Davis Claiborne

NCSU LUG

February 28, 2018

1



Indenting an Entire File

Formats using specified file indenting method

Format the entire file by gg=G in normal mode

Works for most file types (not Python)

See ‘:help =’ for more

2



Insert Mode Completion

Allows for automatic completion

• Entire lines: <C-x><C-l> 1

• Keywords in current file: <C-x><C-n>

• Thesaurus: <C-x><C-t>

• Spelling <C-x>s 2 3

• Keywords in current and included files: <C-x><C-i>

• File names: <C-x><C-f>

See :help ins-completion for more

1 <C-x> represents pressing “Ctrl” and “x” at the same time
2 spell must be enabled
3 Not <C-s>; in terminal Vim that suspends

3



Digraphs

Insert digraph characters (Ö, ı̂, o, ...) easily

While in insert mode, press <C-k>, then the character and modifier

E.g. <C-k>O: creates Ö; <C-k>i> creates ı̂

You can even define your own digraphs, allowing for things like
emoji completion (if you want that for whatever reason)

E.g. Running :digraph fi 128293 allows me to type <C-k>fi

and insert the fire emoji

See :help digraphs for more

4



Text Objects

Allows you to select regions based on syntax

• ip: inner paragraph 4

• ap: a paragraph

• i’: inner single quotes (text contained within single quotes)

• it: text within HTML tags

See :help text-objects for more

4 ‘Paragraphs’ are defined by blank lines
5



Visual Block Mode

Allows you to select blocks of text

Useful for working with blocks of text that span multiple lines, but
don’t include parts of the entire line.

See :blockwise-visual for more

6



Ranges

Allow you to specify commands for only specific parts of file

5,10w temp.txt writes lines 5-10 to a new file called temp.txt

’<,’> represent the start and end of a visual selection and are
automatically put in the status line when working with visual
selections

See :help range for more

7



Offsetting Ranges

Ranges can be offset by adding an amount to the end

This can be useful when you want to do some operation before or
after a pattern

E.g. /pattern/+1 will bring you to one line after the occurrence
of pattern, or /pattern/-1 will bring you one line before

See :help range for more

8



Global Command

Performs an action for a given command

E.g. g/text/d deletes every line with the word ‘text’

General pattern is g/pattern/command, where command is a
visual-mode command, unless specified with normal

E.g. g/text/normal d deletes the first word on every line

See :help global for more

9



Formatting with External Programs

You can use ! to ‘filter,’ or read, external programs

To insert the current date, run :read !date

To format columns, run !column -t on a visual selection

For instance, you can format a bunch of text to a fixed width of 80
by doing vipJ:.!fmt -s -w 80 5

See :help filter for more

5 Recall that vip selects the inner paragraph; J collapses all the lines to one; !
passes fmt the text selected, then replaces the selected text with the result

10



Marks

Marks are useful for quickly navigating between sections of text

Create a mark with m<letter>, where <letter> is any letter

• Lower-case letters are valid only for one file

• Upper-case letters are valid for multiple files

Jump to the start of the line where the mark was made with
’<letter> (single quote)

Jump to the exact location of the mark with ‘<letter> (backtick)

List all current marks with :marks

See :help mark for more

11



Recording Motions and Registers

Recordings are used for motions that will be repeated many times

Registers are used for storing text

Create a recording with q<char>, where <char> is any character
that represents a register

• Lower-case registers are for “regular” motions

• Upper-case registers are appended to the corresponding
lower-case registers

• Numbered registers 0-9 are used internally by Vim

See :help recording and :help registers for more

12



Undo Tree

Vim contains powerful undo capabilities

Vim helps prevent losing work with “undo trees:”

• Undo structure is stored as a tree

• Undoing then performing a new action creates a new branch

View tree with :undolist

Cycle through undos with g- and g+

Undos can be persistent across sessions with an undofile

Plugins exist to allow easier visualization of undo tree [2]

See :help undo-tree for more

13



References I

[1] Vim Documentation: :help toc or
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

[2] Undotree https://github.com/mbbill/undotree

14

http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
https://github.com/mbbill/undotree


The End

15


