
Linux Automation

Ansible



Overview

- The Problem
- Solutions
- Ansible Concepts
- How it all works
- Demo



The Problem

- SysAdmins spending way too much time on: 
- Configuring
- Provisioning
- Troubleshooting
- Maintaining server operations

- Think 100->1,000->10,000 servers for one admin
- You might have, 100 web servers, 1000 file servers, and so on…



The Solutions -- Bash (Old, Hard Way)

Write shell scripts to telnet, ssh into machines and set them up each.

- Installed everywhere by default

Cons:

- Not multi-threaded, usually.
- Hard to troubleshoot any issues that arise



The Solutions -- Puppet/Chef

Agent/Master architecture -- agent manages node and requests info from 
master

- Pull changes to servers using agents. Puppet is over https (XML).
- Great analytics and reporting for managing configurations.

Cons:

- Install agents on every server
- Complex (especially puppet, requires understanding of ruby)



The Solutions -- Ansible

Best of both worlds!

- “Push” changes to servers
- No agents, all done through ssh, python (default on most servers)
- Easy to understand, YAML syntax.
- Faster, without master-agent model
- High security with ssh

Cons:

- ssh can have issues scaling
- Ansible Tower (web portal front-end++) not free



Ansible

Basic Concepts:

- Inventory
- Modules
- Ad-Hoc Commands
- Playbooks

- Tasks
- Handlers
- Roles



Inventory

- Define how to classify remote hosts
- Create logical groups for management aid
- Define communication variables (Ex: ssh port) per group if needed
- Default location: /etc/ansible/hosts



Inventory



Modules

- http://docs.ansible.com/ansible/latest/list_of_all_modules.html
- Used for executing tasks
- Keep track of state

- “Facts”

http://docs.ansible.com/ansible/latest/list_of_all_modules.html


Ad-Hoc Commands

- Ansible {pattern} -m {module} -a “{options}” {flags}
- Pattern: which hosts
- Module: which ansible module
- Options: module options
- Flags: command flags

- Examples:
- File transfer (ansible all -m copy -a “src=/etc/hosts dest=/tmp/hosts”)
- Ping (ansible all -m ping)
- Manage services (ansible webservers -m service -a “name=httpd state=started”

- demo



Playbooks

- YAML language
- Any number of “plays” in a list
- Playbook run to provision multi-machine orchestration



Plays - tasks

- In-order execution on all machines matched according to host
- Sequential on host, parallel on group

- Each uses specific module
- Can incorporate templates (jinja2 syntax)
- Modules used to bring system to desired state
- Can be conditional



Plays - handlers

- Triggered at the end of each block of tasks whenever a “change” has been 
made on the remote system

- ONLY on change

- Referenced by name



Plays - templates and variables

- Used for per-group or per-task changes



Playbooks - roles

- Using ansible file structure, you can break up plays into 
roles for use by playbook

- More dynamic



How it works in Step-by-Step

1. Determine hosts and sort them into groups per Inventory file
2. Create your playbooks
3. Run, ansible gathers “facts”

a. Facts are used to determine state on a per module basis

4. Ansible executes tasks in parallel on specified hosts
5. Re-gathers “facts” to verify state changes



Demo

… I hope



Questions?


