

Linux Security

Scope

● General security practices
● Actionable steps
● Linux server & workstation security

Threat Model

● Three Main Considerations

– Who are you defending
against?

– What capabilities do they
have?

– How persistent will they
be?

● The Rubber Hose Test

● A system is secure under
some threat model when the
cost of breaking the security
is greater than the attacker’s
resources

– or motivation

Threat Model

● NSA
– Virtually unlimited

motivation
– Virtually unlimited

resources
– They probably

backdoored whatever
you’re using anyway

● Dual EC, Intel IME, Android
baseband, etc

– You always lose

● TSA, customs
– Limited motivation
– Limited resources

Threat Model
● My point is that security people need to get their priorities straight. The "threat model" section of a

security paper resembles the script for a telenovela that was written by a paranoid schizophrenic:
there are elaborate narratives and grand conspiracy theories, and there are heroes and villains with
fantastic (yet oddly constrained) powers that necessitate a grinding battle of emotional and technical
attrition. In the real world, threat models are much simpler (see Figure 1). Basically, you're either
dealing with Mossad or not-Mossad. If your adversary is not-Mossad, then you'll probably be fine if
you pick a good password and don't respond to emails from ChEaPestPAiNPi11s@virus-
basket.biz.ru. If your adversary is the Mossad, YOU'RE GONNA DIE AND THERE'S NOTHING THAT
YOU CAN DO ABOUT IT. The Mossad is not intimidated by the fact that you employ https://. If the
Mossad wants your data, they're going to use a drone to replace your cellphone with a piece of
uranium that's shaped like a cellphone, and when you die of tumors filled with tumors, they're going to
hold a press conference and say "It wasn't us" as they wear t-shirts that say "IT WAS DEFINITELY
US," and then they're going to buy all of your stuff at your estate sale so that they can directly look at
the photos of your vacation instead of reading your insipid emails about them. In summary, https://
and two dollars will get you a bus ticket to nowhere. Also, SANTA CLAUS ISN'T REAL. When it rains,
it pours.

– James Mickens

Vectors

● Attack vector

– Entry point an attacker
may use to probe or
exploit

– Generally any place where
an attacker can influence
the state of the system

– Physical access

– Mental access

– I/O

● Attack surface

– Sum of all attack vectors

Case Study: short.csc.ncsu.edu

● Without server room access
– OpenSSH server
– lug.ncsu.edu
– Apache2
– Virtualbox
– ZNC
– ?

● With access
– USB
– NIC
– Power
– ?

Linux Security Model

● Authentication
– Is the user authorized to

access the system?

● Permissions
– Filesystem, user based

● Capabilities
– Way to give certain

binaries certain privileges

● Configuration

● Out of the box, Linux
is fairly secure

● Many improvements
can be made

Users & Groups

● Individual entity on system
– Internally represented by UIDs =

user IDs

● Has set of permissions
● Can be set as ‘owner’ of files &

set permissions on owned files
● Groups = way of granting

permissions, policy to a set of
users
– Internally represented by GIDs =

group IDs

● ‘root’ / ‘superuser’
– Similar to

Administrator or
SYSTEM on Windows

– UID = 0

● Fundamental unit in
security

Authentication

● Two types: remote & local
● Generally only concerned with remote

auth
– Local implies physical access

● Various ways of implementing
– OOTB: /etc/[passwd,shadow]
– Pluggable Authentication Modules (PAM)
– LDAP, SSSD, Kerberos...

● NCSU uses OpenLDAP

● Linux stores hashed
passwords in /etc/shadow
– Typically world-readable,

root-owned
– user:$algo$salt$hash:…
– * or ! or !! = disabled / locked
– Ex. root is disabled

Authentication

● Remote: SSH
– Same methods of backend

auth
– Many ssh-unique factors
– Keypair auth
– Port knocking
– IP blocking

● Passwords
– Complexity
– Cycling

Permissions

● Linux’s way of
determining which
users can access
which files and how
– Read / Write / Execute

● System files owned
by root

Capabilities

● Feature introduced in Linux 2.2
● Before:

– root = god
– others = not god

● After:
– root = god
– qlyoung = demigod
– apache = web god
– ssh = shell god
– …

● Splits up root permissions into individual
“capabilities”

● Programs can set and unset capabilities
– CAP_NET_ADMIN = various network

privileges like adding routes, create & modify
interfaces, etc

– CAP_SYS_BOOT = reboot & exec kernels

● Extremely powerful & fine grained

● Not widely used by end users
(or developers...)

● setuid / setgid
– Special permission set on files
– Allows them to execute with

privileges of file owner or group
– Commonly used to perform root

tasks at startup and then “drop
privileges”

● Capabilities are generally better
than setuid / setgid

● man 7 capabilities

Configuration & Application Security

● Permissions, capabilities,
authentication are nice, but...

● One misconfigured application
can own the whole system

● Extremely important to
properly configure everything
– Difficult
– Time consuming
– Extremely easy to do it wrong

● Ex: misconfigured ssh
– Specify that one particular host can log in

as root without a password
– All other protections irrelevant

● Application security very important
– Suppose ssh runs as root
– Someone finds remote exploitable bug

that lets them overwrite ssh’s code
– Remote user now has root access

This is the Achilles heel of computer security

LOL
hacked :DDD

Security Modules

● Extensions that aim to put a sock on the
Achilles heel

● SELinux
– Kernel module that aims to separate policy

away from implementation
– Similar to capabilities but much more extensive
– Hated by system administrators
– Very fine-grained, knows about users, network

ports, hardware devices, etc
– Made by our best friends, the NSA :-)

● AppArmor
– Much closer to capabilities
– Implements a policy framework like SELinux
– Focuses solely on applications
– Present on Ubuntu OOTB

● grsecurity
– Kernel patches that add things like

stack cookies, ASLR, other
hardening features

● Many of these have since been
added to mainline (unpatched) Linux

– Unpopular with Linus because it
breaks a ton of stuff

– Doesn’t use LSM

● LSM
– Linux Security Modules
– Essentially an API for building

things like SELinux & AppArmor

"The thing is a joke, and they are clowns. When they started talking about people
taking advantage of them, I stopped trying to be polite about their bullshit. Their
patches are pure garbage."

– Linus on grsecurity

Practical Measures, User POV

● Disk encryption
– LUKS
– BitDefender
– TrueCrypt :-(

● Password Managers
– 1Password
– LastPass
– KeePass
– pass (my fav)

● Passwords
– Pwgen

● Two-factor auth
● SSH key pairs

Encryption & Cryptography

● Practice of
enciphering data to
render it unreadable
to external parties

● Two general kinds
– Symmetric crypto
– Asymmetric crypto

● Ciphertext
● Plaintext
● Key

Symmetric Cryptography

● Symmetric encryption
algorithm

● plaintext + key →
ciphertext

● ciphertext + key →
plaintext

● Advantages
– Simple
– Good security

assuming key and
algorithm are strong

● Disadvantages
– Key sharing is hard

Asymmetric Encryption

● A.K.A. public-key
cryptography

● Basic idea:
– Each party has two keys
– Public key, private key
– To send me a message, you

encrypt it with my public key
– To decrypt your message, I

decrypt it with my private
key

● Advantages
– Key sharing is trivial
– Signing

● Disadvantages
– Difficult for novice

users

PGP

● Pretty Good Privacy

– Phil Zimmerman, 1991

– Canonical implementation of
public-key cryptography
using (usually) ElGamal and
RSA

● Web of Trust

● Fingerprints

● GPG

– Gnu Privacy Guard

– GNU implementation of
OpenPGP

– Manages your private key(s)
and the public keys of
yourself and others

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

