## Nonlinear Dynamics and Chaos 10:40:08 <esch>don't listen to ik all he does is dot hats

#### lan Kilgore

North Carolina State University

#### 2015-04-07



### Resources

Three books and a number of papers (references at the end)

- ▶ Kellert, In the Wake of Chaos. 1994
- ► Gleick, Chaos: Making a New Science. 1987
- Sternberg, Dynamical Systems. 2010

Links:

- These slides are online: http://iank.org/ncsulug\_sp15.pdf
- Code: http://github.com/iank/
- email: iank@iank.org

## "Chaos Theory"



## The Seagull Effect



"Lorenz originally used the image of a seagull." (Gleick, 1987, p. 329).

I'm going to make a ridiculous claim and prove it later

"The basic idea of Western science is that you don't have to take into account the falling of a leaf on some planet in another galaxy when you're trying to account for the motion of a billiard ball on a pool table on earth."

- Arthur Winfree, in (Gleick, 1987, p. 14).

Operator  $H{\cdot}$ :

$$y(t) = H\{x(t)\}$$

Obeys superposition (Pedro & Carvalho, 2002, p. 6):

$$H\{a \cdot x_1(t) + b \cdot x_2(t)\} = a \cdot H\{x_1(t)\} + b \cdot H\{x_2(t)\}$$

### Linear systems are easy

Simple harmonic motion:

$$\frac{d^2x}{dx^2} + \frac{k}{m} \cdot x = 0$$

Solution:

$$egin{aligned} x(t) &= A\cos(\omega t - arphi), \ \omega &= \sqrt{rac{k}{m}} \end{aligned}$$

### Nonlinear systems are hard

Simple model for a nonlinear pendulum

$$\frac{d^2\varphi}{d\varphi^2} + \frac{g}{\ell} \cdot \sin(\varphi) = 0$$

### Nonlinear systems are hard

Simple model for a nonlinear pendulum

$$\frac{d^2\varphi}{d\varphi^2} + \frac{g}{\ell} \cdot \sin(\varphi) = 0$$

Solution (Ochs, 2011):

$$\begin{aligned} \theta(t) &= sgn(\dot{\varphi}_0) k\Omega \left[ t - t_0 \right] + sn^{-1}(k_0 | x), \\ \varphi(t) &= 2 \arcsin(sn(\theta(t) | x)) \operatorname{sgn}(cn(\theta(t) | x)), \\ \dot{\varphi}(t) &= \operatorname{sgn}(\dot{\varphi}_0) \sqrt{E_0} \operatorname{dn}(\theta(t) | x). \end{aligned}$$

### State of systems can be represented as a space

- Simple harmonic motion
- Nonlinear pendulum



Figure: Phase space for nonlinear pendulum. After (Ochs, 2011)

### Attractors - fixed point



Figure: Trivial fixed-point attractor for damped pendulum. Pictured: various initial positions and velocities

<sup>&</sup>lt;sup>1</sup>https://github.com/iank/pendulums see damped\_fixedpoint.m

### Attractors - limit cycle



Figure: Transient + periodic behaviour in damped driven pendulum

<sup>1</sup>https://github.com/iank/pendulums see damped\_driven\_pendulum.m

### Multiple attractors - basins

 $f(x) = x^3 - 1$  has three complex roots. Use Newton's method (Sternberg, 2010, p. 20)



Figure: Three solutions and partial attractive basins for Newton's Method on  $x^3 - 1$  in the complex plane

<sup>&</sup>lt;sup>1</sup>https://github.com/iank/newton\_basins

## Fractal basin boundaries (1/3)



Figure: Three solutions and attractive basins for Newton's Method on  $x^3 - 1$  in the complex plane

<sup>1</sup>https://github.com/iank/newton\_basins

## Fractal basin boundaries (2/3)



Figure: Fractal basins for Newton's Method on  $x^3 - 1$  in the complex plane

<sup>1</sup>https://github.com/iank/newton\_basins

## Fractal basin boundaries (3/3)



Figure: Self-similarity in fractal boundary

<sup>&</sup>lt;sup>1</sup>https://github.com/iank/newton\_basins

Period-doubling / bifurcations - (1/3)Ex. Logistic Map (May et al., 1976)



 $^{1} https://github.com/iank/logistic\_map\_bifurcation$ 

## Period-doubling / bifurcations - (2/3)



<sup>1</sup>https://github.com/iank/logistic\_map\_bifurcation

# Period-doubling / bifurcations - (3/3)



<sup>1</sup>https://github.com/iank/logistic\_map\_bifurcation

## Chaos



<sup>1</sup>https://github.com/iank/pendulums see damped\_driven\_pendulum.m

## Chaos



 $^{1} https://github.com/iank/pendulums \ see \ damped\_driven\_pendulum.m$ 

## MATLAB BREAK



### Strange attractors



<sup>1</sup>https://github.com/iank/pendulums see damped\_driven\_pendulum.m

## Stretching and folding

Various formal definitions of chaos (Sternberg, 2010, p.84)



Figure: Stretching and folding in the Rössler attractor. After (Schaffer, 1984).

## Topological mixing - (1/2)

Lorenz system (Lorenz, 1963)

$$\frac{dx}{dt} = \sigma(y-x), \frac{dy}{dt} = x(\rho-z) - y, \frac{dz}{dt} = xy - \beta z.$$

Lorenz attractor  $\sigma$  = 10.000000,  $\rho$  = 28.000000,  $\beta$  = 2.666667



<sup>1</sup>https://github.com/iank/lorenz\_mixing see lorenz.m

## MATLAB BREAK



Topological mixing - (2/2)



Mixing in lorenz system after  $\tau$  = 100.000000 s

<sup>1</sup>https://github.com/iank/lorenz\_mixing see lorenz\_mixing.m

## Limits on predictibility of systems - (1/2)



<sup>1</sup>https://github.com/iank/pendulums see pendulum\_divergence.m

## Limits on predictibility of systems - (2/2)



<sup>1</sup>https://github.com/iank/pendulums see pendulum\_divergence\_exponential.m

### Lyapunov

- Difficult to estimate Lyapunov time empirically (Tancredi, Sánchez, & Roig, 2001).
- My estimate based on renormalization method in (Benettin, Galgani, Giorgilli, & Strelcyn, 1980): 0.20
- Reasonable for this system (Wolf, Swift, Swinney, & Vastano, 1985)



<sup>1</sup>https://github.com/iank/pendulums see lyapunov.m

Leaf falling on another planet.. - (1/3)

Consider a leaf in a tree on earth and a damped, driven pendulum on Hyperion

- Conservative estimate of LCE:  $\lambda_1 = 0.12$  bit/s
- $m_{leaf} = 0.1g$
- Hyperion is about 1,200 gigameters away from the leaf
- Leaf falls

Leaf falling on another planet.. - (2/3)

- Hyperion is about 1,200,000,000 + 10 m away from the leaf
- Acceleration of a mass due to gravity:  $a_{grav} = G \frac{m_{leaf}}{r^2}$
- ▶ Difference in gravitational acceleration due to leaf in tree vs leaf on ground  $\approx 7.7 * 10^{-50} \approx 10^{-51} m/s^2$

• 
$$\Delta v \approx a_{grav} * \Delta t$$

- Let  $\Delta t = 10s$  (!!)
- $\Delta v \approx 10^{-50} \frac{m}{s}$

## Leaf falling on another planet.. - (3/3)

- 10 m/s is enough uncertainty to have no idea where the pendulum is
- Lyapunov defn:  $10 = 10^{-50} \cdot 2^{\lambda_1 t}$

• Solve: 
$$\log_2 \frac{10}{10^{-50}} / 0.12 = t$$

## Leaf falling on another planet.. - (3/3)

- 10 m/s is enough uncertainty to have no idea where the pendulum is
- Lyapunov defn:  $10 = 10^{-50} \cdot 2^{\lambda_1 t}$
- Solve:  $\log_2 \frac{10}{10^{-50}} / 0.12 = t$
- *t* ≈ 23.5 minutes

## Leaf falling on another planet.. - (3/3)

- 10 m/s is enough uncertainty to have no idea where the pendulum is
- Lyapunov defn:  $10 = 10^{-50} \cdot 2^{\lambda_1 t}$
- Solve:  $\log_2 \frac{10}{10^{-50}} / 0.12 = t$
- $t \approx 23.5$  minutes



# Kellert - (1/4)



(Kellert, 1994, ch. 2, 3)
Kellert - (2/4) - Varieties of the impossible

Types of impossibility: (Kellert, 1994, ch. 2)

- 1. logical
- 2. theoretical
- 3. practical: "completion would require more resources than are available to human beings"

[practical] impossibility does not hold for all times and places

- (Kellert, 1994, p. 37).

Kellert - (2/4) - Varieties of the impossible

Types of impossibility: (Kellert, 1994, ch. 2)

- 1. logical
- 2. theoretical
- 3. practical: "completion would require more resources than are available to human beings"

[practical] impossibility does not hold for all times and places

- (Kellert, 1994, p. 37).

Kellert upgrades prediction of chaotic systems from practical to theoretical

Senses of "deterministic": (Kellert, 1994, pp. 57-61)

- 1. Differential dynamics
- 2. Unique evolution (Laplacian)
- 3. Value determinateness
- 4. Total predictability

Senses of "deterministic": (Kellert, 1994, pp. 57-61)

- 1. Differential dynamics
- 2. Unique evolution (Laplacian)
- 3. Value determinateness
- 4. Total predictability
- Check: (Kellert, 1994, pp. 62-71)
  - 4. Unique trajectory may exist but we can never know which a system is on

Senses of "deterministic": (Kellert, 1994, pp. 57-61)

- 1. Differential dynamics
- 2. Unique evolution (Laplacian)
- 3. Value determinateness
- 4. Total predictability

Check: (Kellert, 1994, pp. 62-71)

4. Unique trajectory may exist but we can never know which a system is on

3.  $\Delta x \Delta p > \frac{\hbar}{2}$ 

Senses of "deterministic": (Kellert, 1994, pp. 57-61)

- 1. Differential dynamics
- 2. Unique evolution (Laplacian)
- 3. Value determinateness
- 4. Total predictability

Check: (Kellert, 1994, pp. 62-71)

- 4. Unique trajectory may exist but we can never know which a system is on
- 3.  $\Delta x \Delta p > \frac{\hbar}{2}$
- 2. Yes for classical and non-dissipative systems. No if we turn on QM.

Kellert - (4/4) - Identical worlds

- ▶ Unique evolution: "if there were two identical worlds at time t<sub>0</sub>, then they would be identical at all other times" (Kellert, 1994, p.74)
- What does "identical world" mean? Either:
  - "all particles have the same position, momentum, etc, even to an infinite number of decimal places"
  - "the same, so far as physics can specify"

Kellert - (4/4) - Identical worlds

- ▶ Unique evolution: "if there were two identical worlds at time t<sub>0</sub>, then they would be identical at all other times" (Kellert, 1994, p.74)
- What does "identical world" mean? Either:
  - "all particles have the same position, momentum, etc, even to an infinite number of decimal places"
  - "the same, so far as physics can specify"

Kellert: Chaos + QM: "stuff happens. It just happens."

Kellert - (4/4) - Identical worlds

- ▶ Unique evolution: "if there were two identical worlds at time t<sub>0</sub>, then they would be identical at all other times" (Kellert, 1994, p.74)
- What does "identical world" mean? Either:
  - "all particles have the same position, momentum, etc, even to an infinite number of decimal places"
  - "the same, so far as physics can specify"

Kellert: Chaos + QM: "stuff happens. It just happens." Local determinism (Kellert, 1994, p. 75)

# Chaos allows us to make predictions in apparently disordered systems



Winfree's mosquito anecdote (Gleick, 1987, p. 285) Measles (Schaffer, 1984), ecology (Schaffer & Kot, 1985)

## BONUS SLIDE

- Many-body problem, stability of solar system (Laskar & Gastineau, 2009)
- Universality (Feigenbaum, 1983)
- "Period 3 implies chaos" (Li & Yorke, 1975)
- Soviets, feminism, linear bias, digital computers (Kellert, 1994, ch. 5) vs (Gleick, 1987)
- Von Neuman weather control (Gleick, 1987, p. 18)
- Snowflakes! (Gleick, 1987, pp. 309-311),
- Reconstruction of phase space from experimental data (Schaffer, 1984)
- Scale
- High-dimensional chaos
- White earth climate (Gleick, 1987, p. 170)

### References I

Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M. (1980). Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: Theory. *Meccanica*, 15(1), 9–20.

Feigenbaum, M. J. (1983). Universal behavior in nonlinear systems. *Physica D: Nonlinear Phenomena*, 7(1), 16–39.
Gleick, J. (1987). *Chaos: Making a new science*. Open Road Media. (Kindle Version. ASIN: B004Q3RRPI)
Kellert, S. H. (1994). *In the wake of chaos: Unpredictable order in dynamical systems*. University of Chicago press.
Laskar, J., & Gastineau, M. (2009). Existence of collisional trajectories of mercury, mars and venus with the earth.

Nature, 459(7248), 817-819.

Li, T.-Y., & Yorke, J. A. (1975). Period three implies chaos. American mathematical monthly, 985–992.

#### References II

- Lorenz, E. N. (1963). Deterministic nonperiodic flow. *Journal of the atmospheric sciences*, *20*(2), 130–141.
- May, R. M., et al. (1976). Simple mathematical models with very complicated dynamics. *Nature*, *261*(5560), 459–467.
- Ochs, K. (2011). A comprehensive analytical solution of the nonlinear pendulum. *European Journal of Physics*, *32*(2), 479.
- Pedro, J. C., & Carvalho, N. B. (2002). Intermodulation distortion in microwave and wireless circuits. Artech House.
- Schaffer, W. M. (1984). Stretching and folding in lynx fur returns: evidence for a strange attractor in nature? *American Naturalist*, 798–820.
- Schaffer, W. M., & Kot, M. (1985). Nearly one dimensional dynamics in an epidemic. *Journal of Theoretical Biology*, *112*(2), 403–427.

Sternberg, S. (2010). Dynamical systems. Courier Corporation.

- Tancredi, G., Sánchez, A., & Roig, F. (2001). A comparison between methods to compute lyapunov exponents. *The Astronomical Journal*, *121*(2), 1171.
  Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985).
  - Determining lyapunov exponents from a time series. *Physica D: Nonlinear Phenomena, 16*(3), 285–317.