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Resources

Three books and a number of papers (references at the end)

I Kellert, In the Wake of Chaos. 1994

I Gleick, Chaos: Making a New Science. 1987

I Sternberg, Dynamical Systems. 2010

Links:

I These slides are online:
http://iank.org/ncsulug sp15.pdf

I Code: http://github.com/iank/

I email: iank@iank.org
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“Chaos Theory”
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The Seagull Effect

“Lorenz originally used the image of a seagull.” (Gleick, 1987, p. 329).
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I’m going to make a ridiculous claim and prove it later

“The basic idea of Western science is that you don’t have
to take into account the falling of a leaf on some planet
in another galaxy when you’re trying to account for the
motion of a billiard ball on a pool table on earth.”

– Arthur Winfree, in (Gleick, 1987, p. 14).
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Linear systems

Operator H{·}:

y(t) = H{x(t)}

Obeys superposition (Pedro & Carvalho, 2002, p. 6):

H{a · x1(t) + b · x2(t)} = a · H{x1(t)}+ b · H{x2(t)}
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Linear systems are easy

Simple harmonic motion:

d2x

dx2
+

k

m
· x = 0

Solution:

x(t) = A cos(ωt − ϕ),

ω =

√
k

m
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Nonlinear systems are hard

Simple model for a nonlinear pendulum

d2ϕ

dϕ2
+

g

`
· sin(ϕ) = 0

Solution (Ochs, 2011):

θ(t) = sgn(ϕ̇0)kΩ [t − t0] + sn−1(k0|x),

ϕ(t) = 2 arcsin(sn(θ(t)|x))sgn(cn(θ(t)|x)),

ϕ̇(t) = sgn(ϕ̇0)
√
E0dn(θ(t)|x).
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State of systems can be represented as a space

I Simple harmonic motion

I Nonlinear pendulum

Figure: Phase space for nonlinear pendulum. After (Ochs, 2011)

9 / 41

http://upload.wikimedia.org/wikipedia/commons/e/ea/Simple_Harmonic_Motion_Orbit.gif


Attractors - fixed point

Figure: Trivial fixed-point attractor for damped pendulum. Pictured:
various initial positions and velocities

1https://github.com/iank/pendulums see damped fixedpoint.m 10 / 41



Attractors - limit cycle

Figure: Transient + periodic behaviour in damped driven pendulum

1https://github.com/iank/pendulums see damped driven pendulum.m
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Multiple attractors - basins
f (x) = x3 − 1 has three complex roots. Use Newton’s method
(Sternberg, 2010, p. 20)

Figure: Three solutions and partial attractive basins for Newton’s
Method on x3 − 1 in the complex plane

1https://github.com/iank/newton basins
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Fractal basin boundaries (1/3)

Figure: Three solutions and attractive basins for Newton’s Method on
x3 − 1 in the complex plane

1https://github.com/iank/newton basins 13 / 41



Fractal basin boundaries (2/3)

Figure: Fractal basins for Newton’s Method on x3 − 1 in the complex
plane

1https://github.com/iank/newton basins 14 / 41



Fractal basin boundaries (3/3)

Figure: Self-similarity in fractal boundary

1https://github.com/iank/newton basins
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Period-doubling / bifurcations - (1/3)
Ex. Logistic Map (May et al., 1976)

1https://github.com/iank/logistic map bifurcation 16 / 41



Period-doubling / bifurcations - (2/3)

1https://github.com/iank/logistic map bifurcation
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Period-doubling / bifurcations - (3/3)

1https://github.com/iank/logistic map bifurcation
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Chaos

1https://github.com/iank/pendulums see damped driven pendulum.m
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Chaos

1https://github.com/iank/pendulums see damped driven pendulum.m
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MATLAB BREAK
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Strange attractors

1https://github.com/iank/pendulums see damped driven pendulum.m
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Stretching and folding
Various formal definitions of chaos (Sternberg, 2010, p.84)

Figure: Stretching and folding in the Rössler attractor. After (Schaffer,
1984).
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Topological mixing - (1/2)
Lorenz system (Lorenz, 1963)

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y ,

dz

dt
= xy − βz .

1https://github.com/iank/lorenz mixing see lorenz.m 24 / 41



MATLAB BREAK
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Topological mixing - (2/2)

1https://github.com/iank/lorenz mixing see lorenz mixing.m
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Limits on predictibility of systems - (1/2)

1https://github.com/iank/pendulums see pendulum divergence.m
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Limits on predictibility of systems - (2/2)

1https://github.com/iank/pendulums see
pendulum divergence exponential.m
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Lyapunov
I Difficult to estimate Lyapunov time empirically (Tancredi,

Sánchez, & Roig, 2001).
I My estimate based on renormalization method in (Benettin,

Galgani, Giorgilli, & Strelcyn, 1980): 0.20
I Reasonable for this system (Wolf, Swift, Swinney, & Vastano,

1985)

1https://github.com/iank/pendulums see lyapunov.m
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Leaf falling on another planet.. - (1/3)

Consider a leaf in a tree on earth and a damped, driven pendulum
on Hyperion

I Conservative estimate of LCE: λ1 = 0.12 bit/s

I mleaf = 0.1g

I Hyperion is about 1,200 gigameters away from the leaf

I Leaf falls
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Leaf falling on another planet.. - (2/3)

I Hyperion is about 1,200,000,000,000 + 10 m away from the
leaf

I Acceleration of a mass due to gravity:
agrav = G mleaf

r2

I Difference in gravitational acceleration due to leaf in tree vs
leaf on ground ≈ 7.7 ∗ 10−50 ≈ 10−51m/s2

I ∆v ≈ agrav ∗∆t

I Let ∆t = 10s (!!)

I ∆v ≈ 10−50m
s
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Leaf falling on another planet.. - (3/3)

I 10 m/s is enough uncertainty to have no idea where the
pendulum is

I Lyapunov defn: 10 = 10−50 · 2λ1t

I Solve: log2
10

10−50 /0.12 = t

I t ≈ 23.5 minutes
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Kellert - (1/4)

(Kellert, 1994, ch. 2, 3)
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Kellert - (2/4) - Varieties of the impossible

Types of impossibility: (Kellert, 1994, ch. 2)

1. logical

2. theoretical

3. practical: “completion would require more resources than are
available to human beings”

[practical] impossibility does not hold for all times and
places

– (Kellert, 1994, p. 37).

Kellert upgrades prediction of chaotic systems from practical to
theoretical
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Kellert - (3/4) - Determinism

Senses of “deterministic”: (Kellert, 1994, pp. 57-61)

1. Differential dynamics

2. Unique evolution (Laplacian)

3. Value determinateness

4. Total predictability

Check: (Kellert, 1994, pp. 62-71)

4. Unique trajectory may exist but we can never know which a
system is on

3. ∆x∆p > ~
2

2. Yes for classical and non-dissipative systems. No if we turn on
QM.
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Kellert - (4/4) - Identical worlds

I Unique evolution: “if there were two identical worlds at time
t0, then they would be identical at all other times” (Kellert,
1994, p.74)

I What does “identical world” mean? Either:
I “all particles have the same position, momentum, etc, even to

an infinite number of decimal places”
I “the same, so far as physics can specify”

Kellert: Chaos + QM: “stuff happens. It just happens.”
Local determinism (Kellert, 1994, p. 75)
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Chaos allows us to make predictions in apparently
disordered systems

Winfree’s mosquito anecdote (Gleick, 1987, p. 285)
Measles (Schaffer, 1984), ecology (Schaffer & Kot, 1985)
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BONUS SLIDE

I Many-body problem, stability of solar system (Laskar &
Gastineau, 2009)

I Universality (Feigenbaum, 1983)

I “Period 3 implies chaos” (Li & Yorke, 1975)

I Soviets, feminism, linear bias, digital computers (Kellert,
1994, ch. 5) vs (Gleick, 1987)

I Von Neuman weather control (Gleick, 1987, p. 18)

I Snowflakes! (Gleick, 1987, pp. 309-311),

I Reconstruction of phase space from experimental data
(Schaffer, 1984)

I Scale

I High-dimensional chaos

I White earth climate (Gleick, 1987, p. 170)
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