Intro to Redis

Matthew Frazier — NC State FOSS Fair 2012

What is Redis?

A high-performance server for networked data structures
(and some other stuff)

Non-relational database (“NoSQL”)
Open source (BSD license)

Created by Salvatore Sanfilippo (@antirez)
?2 Really smart and nice guy

2 Kind of a perfectionist (“Quality, or Death :)”)
2 Works for VMWare

Features of Redis

Useful data structures:
strings, sets, lists, hashes, and sorted sets

Keeps dataset in RAM, but persists to disk
Publish/subscribe messaging

Simple network protocol and API

Easy to build and deploy
Well-documented and tested

Faster than Sonic the Hedgehog on espresso

Live Demo

1: Building and Benchmarking Redis

Good Charlotte, that's fast

Written in ANSI C
Custom evented I/0 library

Keeps entire dataset in RAM
Still persists to disk 100% reliably with AOF

2 Unfortunately this means your entire dataset has to fit in
RAM

7
Data Model

Overview

Key-value database

Keys are binary-safe strings

? (though generally people avoid whitespace and funky
binary data)

Values can be strings, or an assortment of data structures

Data Types

Strings — binary-safe strings up to 1 GB

Sets — hash table-backed sets

Lists — doubly linked lists

Hashes — hash tables mapping keys to values

Sorted sets (zsets) — values stored with associated
floating-point scores

? hash table + skip list

Redis API is based on commands
? e.g. SET key value; SINTER key [key...]

Issue commands with a simple text-based protocol

Most commands operate on one data type

A Sforset, L/R for list, H for hash, Z for sorted set
? raise errors for mismatched types

72 treat nonexistent keys like empty containers

Each command is guaranteed to be atomic

Also commands for pub/sub and server management

Implications

Use the best data structure for each piece of data
Assemble them into more complex data structures

Very low-level — you have to glue things together on the
client side

7
WhatYou Can Do With It

Operations on Anything

TYPE key — return the key’s data type
DEL key [key...] — delete the key
EXISTS key — check whether the key exists

EXPIRE key seconds, EXPIREAT key timestamp — mark keys to
be deleted later

RENAME key newkey — atomically rename the key

RENAMENX key newkey — rename if the destination key does
not exist

Use Case: Caching

Use Redis for caching stuff instead of memcached
? SET cache:articles:32 “<ldoctype html>...”
? EXPIRE cache:articles:32 60

60 seconds later (or when Redis reaches the memory
limit), cache:articles:32 is automatically eliminated

Not just strings — you can also cache all sorts of other
data

GET key — return the value of key (if it’s a string)

SET key value — set the value of key

GETSET key value — set the value of key and return the
old value

SETNX key value — set the value of key if it doesn’t exist

MGET key [key...], MSET key value [key value...], MSETNX
key value [key value...]

Use Case: Sessions and Things

Session data is frequently stored in a relational database
? Usually in serialized form in a BLOB column
2 Also OAuth tokens, CSRF tokens, etc. etc.

Storing transient data in Redis is more efficient
? SET sessions:6a87ac3c <serialized _session_data>
72 GET sessions:6a87ac3c

SETEX lets you SET and EXPIRE simultaneously
? SETEX sessions:6a87ac3c 604800 <serialized_session_data>

? Automatically cleans up the session in a week(ish)

Use Case: Locks

Complicated but absolutely reliable distributed lock algorithm:

while True:
if SETNX(key, expire_time):
return True
else:
timestamp = int(GET(key))
if timestamp > time.time():
timestamp = int(GETSET(key, expire_time))
if timestamp > time.time():
return True
else:
time.sleep(5)

Strings as Buffers

Of bytes:

?” STRLEN key — get the length of the string at key

? GETRANGE key start end — get part of a key

?” SETRANGE key offset value — replace part of a key

Of bits:

? GETBIT key offset — return the value of the bit at the given
offset

? SETBIT key offset value — sets a specific bit in the string

Strings as Counters

Treat the key as a signed 64-bit integer

72 INCR key
?” INCRBY key increment
?” DECR key

?” DECRBY key increment

Redis can actually store the string as an integer internally

Use Case: Stat Counting

Using counters to track multiple statistics
INCR hits:url:{SHA1 of URL}

INCR hits:day:2012-03-17

INCR hits:urlday:{SHA1 of URL}:2012-03-17
INCR hits:country:us

N N N N N

And so on...

Each counter is cheap since it’s stored as a machine int
? Also easily shardable

Use Case: Unique ID’s

When using Redis as a primary datastore, use INCR to get
the next available ID

72 INCR articles:maxid
A For the first one, this will return 1
2 For all subsequent, it will return one not already in use

SADD key member [member...] —add members to a set [O(1)*]

SREM key member [member...] — remove members from a set
[0(1)*]

SMEMBERS key — return every member of a set [O(N)]
SISMEMBER key member — check whether an item is in the set [O(1)]

SCARD key — return the cardinality of a set [O(1)]
SPOP key — delete and return a random member [O(1)]

SRANDMEMBER key — just return a random member [O(1)]

Use Case: Collections of Stuff

All items:
A SADD articles:all 45

Tagging:
2 SADD article:45:tags redis
SADD articles:tagged:redis 45

Redis optimizes sets consisting entirely of integers to
reduce memory usage

Use Case: Random Stuff

Get a random article ID:
72 SRANDMEMBER articles:all

Far more efficient than ORDER BY RAND() LIMIT 1
72 Redis: O(1)
2 MySQL: O(VER NINE THOUSAAAAAND!)

You can even use this if your data is primarily in another
datastore

Multiple Sets Simultaneously

SMOVE source destination member — move member from source to
destination atomically

SUNION key [key...] — return all the items that are in any set [O(N)]

SINTER key [key...] — return all the items that are in each specified set
[O(N*M) worst case]

SDIFF key [key...] — return the set difference of the first set with the
rest [O(N)]

Also STORE versions of these three:

?” SUNIONSTORE destination key [key...]
?” SINTERSTORE destination key [key...]
?” SDIFFSTORE destination key [key...]

Lists — Unpaired Operations

LLEN key — return the length of the list [O(1)]

LRANGE key start stop — slice the list [O(S+N)]

LINDEX key index — get the value at a certain index [O(N)]

LSET key index value — replace the value at a specific index [O(N)]

LINSERT key BEFORE | AFTER pivot value —insert a value somewhere
in the list [O(N)]

LREM key count value — delete values from the list [O(N)]

LTRIM key start stop — trims a list to a specific range [O(N)]

Lists — L/R Paired Operations

L is head (index 0), R is tail (index 1)

LPUSH/RPUSH key value [value...] — add values at the head/tail
of the list [O(1)*]

LPUSHX/RPUSHX key value — append/prepend a value if the list
exists [O(1)]

LPOP/RPOP key — remove and return the value at the head/1ail
of the list [O(1)]

RPOPLPUSH source destination — move a value from the tail of
one list to the head of another [O(1)]

72 ..whyno LPOPRPUSH?

Use Case: Capped Collections

Maintain a list of the 100 most recent comments
72 RPUSH comments:latest 838
2 LTRIM 099

Also good for things like social media streams

Lists — Blocking Operations

BLPOP/BRPOP key [key...] timeout

? If there’s an element at the head/tail of any of the
provided lists, returns it (and the list it came from)

2 If thereisn’t, the server will block the client up to timeout
seconds until there is one

72 For multiple clients blocking, it’s first come, first served

BRPOPLPUSH source destination timeout

? Behaves like BRPOP, but also prepends the returned value
to destination once it’s returned

72 ..whyno BLPOPRPUSH?

Use Case: Task Queues

Add jobs to the queue with:

? RPUSH queue:mail <ID or serialized job data>

Then have a bunch of workers running:
2 BLPOP 0 queue:mail

All jobs posted will get sent to a waiting client ASAP

Since BLPOP returns both the key and the value, you can
wait on multiple jobs with:

2 BLPOP 0 queue:mail queue:trackback queue:archive

HGET key field — get a field from a hash [O(1)]

HSET key field value — set a hash field [O(1)]
HDEL key field — delete a field from the hash [O(1)]

HEXISTS key field — check whether the hash field exists
[O(1)]

HLEN key — return the number of fields in the hash [O(1)]

Hashes continued

HGETALL key — return all the fields and values of the hash
[O(N)]

HMGET key field [field...], HMSET key field value [field value...]
[0(1)*]

HKEYS/HVALUES key — return the field names or values for the
hash, in no particular order [O(N)]

HINCRBY key field increment — treat the hash field as an
integer and increment or decrement it [O(1)]

HSETNX key field value — set the hash field if it is not already
set [O(1)]

Use Case: Object Records

For object records with scalar fields, hashes are more
memory-efficient than separate keys

? Create: HMSET users:1000 name matthew home /home/
matthew shell /bin/bash

A Retrieve: HGETALL users:1000
?A Update: HSET users:1000 shell /usr/bin/fish
A Delete: DEL users:1000

Use “subkeys” to store collection values
2 SADD users:1000:groups 32

Sorted sets

ZADD key score member [score member...] —add members to the sorted
set (or update their scores) [O(log(N))*]

ZCARD key — return the number of members in the sorted set [O(1)]
ZSCORE key member — return the score of the member [O(1)]

ZINCRBY key member increment — increment a member’s score
[O(log(N))]

ZREM key member [member...] — remove the members from the sorted
set [O(log(N))*]

ZRANK/ZREVRANK key member — return the rank of the member within
the sorted set, with scores in ascending/descending order [O(log(N))]

Sorted sets — query operations

ZCOUNT key min max — count the number of elements
within a certain range [O(log(N)+M)]

ZRANGE/ZREVRANGE key start stop [WITHSCORES] —
return elements of the sorted set by rank

ZRANGEBYSCORE/ZREVRANGEBYSCORE key min/max
max/min [WITHSCORES] [LIMIT offset count] — return
elements of the sorted set by score [O(log(N)+M)]

Sorted sets — more operations

ZREMRANGEBYRANK key start stop — delete all elements
of the sorted set within the given indices [O(log(N)+M)]

ZREMRANGEBYSCORE key min max — delete all elements
from the sorted set within a certain range [O(log(N)+M)]

ZUNIONSTORE [complicated] — take a union of multiple
[sorted] sets and stash it in a key [O(N)+O(M log(M))]

ZINTERSTORE [complicated] — take an intersection of
multiple [sorted] sets and stash it in a key

[O(N*K)+O(M log(M)) worst case]

Use Case: High score tables

Add people to the table:
2 ZADD scores:2012-01-03 <game ID> 8810
2 ZADD scores:2012-01-04 <game ID> 10270

Show the user their rank:
2 ZREVRANK scores:2012-01-04 <game ID>

Get the top 10 for a day:
?” ZREVRANGE scores:2012-01-04 0 9 [WITHSCORES]

Create weekly, monthly, or yearly tables:

A ZUNIONSTORE scores:2012-W01 7 2012-01-01 [...] 2012-01-07
AGGREGATE MAX

Use Case: Date-based indices

Use UNIX timestamps as scores
2 ZADD articles:bydate 1329257190 44

Get all the articles for February 2012:
?” ZREVRANGEBYSCORE articles:bydate 1330541999 1328072400

Even paginate:

A ZREVRANGEBYSCORE articles:bydate 1330541999 1328072400
LIMIT O 10

A ZREVRANGEBYSCORE articles:bydate 1330541999 1328072400
LIMIT 10 10

.. ”

MULTI/EXEC

Execute multiple commands simultaneously
?2 Call MULTI to begin queuing the commands
72 Enter all the commands

? Call EXEC to execute them all in a row

#2 Call DISCARD to cancel

EXEC will return the return values from all the commands
No other commands will be run until EXEC completes
Redis checks the syntax when you queue commands, but they

can still fail at runtime — Redis will just return the error and
keep plowing through

Optimistic Locking with WATCH

Problem: What if we read a value, start queuing
commands based on it, but then the value changes
before we EXEC?

Solution: WATCH!

?2 Call WATCH with the keys we plan on using
Read values

Then do MULTI/EXEC

If the keys have changed since we called WATCH, EXEC
errors out instead of running our commands

In that case, start over!

N N

N

Lua Scripting

Run Lua scripts server-side

2 They have access to all the Redis commands, and some Lua
libraries

2 No other commands are served while a Lua script is
running — use this to perform complex operations

2 Should be completely deterministic in order to replicate
and AOF properly

To be released in Redis 2.6

Lua Scripting — EVAL Command

EVAL source numkeys [key ...] [arg ...]

?2 Calling conventions are kinda funky, but it lets Redis detect
problems when running in a cluster

7 Also EVALSHA —if you have run the script before, Redis will
use the compiled bytecode

Inside the script:

? Access arguments using KEYS and ARGV

? Call Redis commands with redis.call and/or redis.pcall
? Luastandard libraries + Redis tools + CJSON + Istruct

ZPOP using Lua Scripting

Remove and return the lowest-scored item from a sorted
set, atomically

local key = KEYS[1]

local element = redis.call(“ZRANGE”, key, 0, 0)[1]
redis.call(“ZREM”, key, element)
return element

Run using EVAL <source> 1 <key>

Other Features

Publish/Subscribe Messaging

Developed out of BLPOP and BRPOP

Subscribe to a channel:
#” SUBSCRIBE freenode:#ncsulug freenode:#bottest

Publish a message on a channel:

?” PUBLISH freenode:#ncsulug
“<lessthanthree> leafstorm: UNLOCKED: VOLCANIC LAVA

FLOW”

When you’re done listening:
#” UNSUBSCRIBE freenode:#ncsulug freenode:#bottest

Master-Slave Replication

Add “slaveof <host> <port>" to the slave’s config file

Slave will sync dataset from master, then master will send
commands to slave

Slave will automatically resync if it loses the connection

Alter settings at runtime with:
2 SLAVEOF <HOST> <PORT> to set a new master
2 SLAVEOF NO ONE to turn slave into master

Not actually here yet!

? (antirez keeps changing the spec)

But eventually it will let you distribute datasets across
multiple nodes intelligently

Until then, use simple sharding or lots of RAM

.

