Wireless Hacking (for Fun and Profit)

Mark Whitteker, CISSP, GSNA, GCFA

Agenda

- Wireless overview
- Legal Issues
- Hardware
- Software
- Wireless detection
- Data capture
- WEP cracking
- War driving
- SideJacking
- Preventative measures
- Demo / Questions

Wireless Overview

- Based on the 802.11 specification
- 802.11a 5GHz 54 Mbps data rate
 - Indoor range ~35 meters
 - Outdoor range ~120 meters
 - 802.11b 2.4GHz 11 Mbps data rate
 - Indoor range ~38 meters
 - Outdoor range ~140 meters
- 802.11g 2.4GHz 54 Mbps data rate
 - Indoor range ~38 meters
 - Outdoor range ~140 meters
- 802.11n 2.4/5GHz 248 Mbps data rate (MIMO technology)
 - Indoor range ~70 meters
 - Outdoor range ~250 meters

Wireless Overview cont.

- Security was added to wireless as an afterthought
 - WEP Wired Equivalent Privacy
 - Developed without participation by the cryptanalysis community
 - Beginning in 2001 several weaknesses were identified
 - Can be cracked in minutes with widely available and free software
 - 64-bit WEP (WEP-40) Very weak
 - 128-bit WEP (WEP-104) Weak
 - 40/104 refers to the encryption key length
 - Remaining size (24) refers to the Initialization Vector (IV)
 - Together they form the RC4 traffic key
 - Larger key size requires more captured data to crack
 - Attacks available to stimulate necessary traffic
 - Other weaknesses such as IV collisions, altered packets, etc. are not effected by use of longer key

Wireless Overview cont.

- Wi-Fi Protected Access (WPA / WPA2) developed to replace WEP
- WPA implements the majority of the 802.11i standard, and will run on pre-WPA cards (through firmware upgrades)
- WPA2 implements the full standard, but will not work with some older cards
- Typically no longer an issue, as all currently manufactured hardware supports WPA / WPA2
- Two flavors: Personal and Enterprise
- Personal utilizes a pre-shared key (PSK)
 - Security depends on the strength and secrecy of the key
- Enterprise utilizes an IEEE 802.1X authentication server
- Like WEP, data is encrypted using RC4
 - Uses the Temporal Key Integrity Protocol (TKIP) to dynamically change keys
 - Larger initialization vector (IV) of 48 bits
- More difficult to crack than WEP

L CLOT

Legal Issues

- Searching for wireless networks is legal in the US
- Unauthorized use of wireless networks may be illegal depending on local laws
 - Currently legal in NC
- Intentionally circumventing the security of a private network to gain unauthorized access IS illegal
- Conduct your testing on your own private network, or obtain written permission from the network owner (especially in the case of corporate testing)

Hardware

Laptop - the more Linux friendly, the better
The majority of tools are Linux based
Mac OSX gaining popularity among testers
Personal success with:

IBM ThinkPad T60p

- Dell Latitude D820
- Apple MacBook Pro
- Superman Learning Laptop

Hardware cont.

Wireless Card

- Internal OK for localized testing
 - Limited power and range
- PCMCIA or USB with external antenna connector best
 - High-gain antenna for war driving
 - Directional antenna for directed attacks
- Chipset depends on the tools you plan to use
 - Orinoco
 - Prism
 - Atheros
- Not as big an issue as it used to be
- Needs to support promiscuous mode

Hardware cont.

GPS Receiver

- Used if you want to map networks to physical locations
- Basic receiver with serial connection is all that is necessary (such as the Garmin eTrex)

External Antenna

- High-gain for greater range
- Directional for targeted attack

Software - The Platform

- Linux choose your favorite flavor
- Personal choice BackTrack "Live" distro
 - Pre-built with numerous security tools
 - CD "lite" version and USB (1GB) version
 - Based on Slackware Linux
 - http://www.remote-exploit.org/backtrack.html
 - Current version: Beta 3

Software - The Tools

- Numerous to choose from
- Some work better on specific chipsets
- We'll look at a few of the most used
 - Kismet Wireless detection
 - Airodump-ng Data capture
 - Aircrack-ng WEP cracking
 - Ferret data seepage collection
 - Hamster Windows tool (but compliments Ferret)

K I S M E T

Wireless Detection

Kismet

- http://www.kismetwireless.net/
- Identifies networks by passibely collecting packets
 - Detects standard named networks
 - Detects hidden networks
 - Infers the presence of non-beaconing networks via data traffic

Wireless Detection

SSID
Type
Encryption
Packets
Flags default configuration

					drag	orn@gir.l	lan, nerv	-un.nets/home/dra	agorn 🗆 🗙
-Network List-(First Seen)								———(-) L	Jp
Name	Т	М	Ch	Packts	Flags	Data	Clnt	Manuf	
happy	Ĥ	Ν	06	29		0	0	Linksys	
linksys	A.	N	0 6	6	F	•	•	Linksys	
linksys	A	N	0 6	5	F	•	•	Linksys	
cec	Ĥ	Ν	03	6	Τ4	1	1	Cisco	
<no ssid=""></no>	Ĥ	Y	06	54		0	0	Cisco	
linksys	A	N	0 6	145	F	0	•	Linksys	
linksys	A.	N	0 6	17	FU4	1	1	Linksys	
eec080	A.	Ν	06	24		0	0	D-Link	
bostonpublichealth	A.	Y	09	1191		558	57	Cisco	
bostonpublichealth	A	Y	09	1794		886	61	Cisco	
linksys	A.	N	0 6	5	F	0	0	Linksys	
(no ssid)	A.	Y	07	8		0	0	Lucent	
hawaii	Â	Ν	09	12		0	0	Cisco	
- BosMed04	Ģ	N	10	27		0	0	Cisco	
I BosMed04	A.	N	09			0	0	Cisco	
I BosMed04	A.	N	10	4		0	0	Cisco	
I BosMed04	A	Ν	10	1		0	0	Cisco	
linksys	Â	N	06	12	F03	4	3	Linksys	
LinksysWirelessNet	A	Ν	09	132		0	0	Linksys	
linksys	Â	N	06	376	F03	<u>(</u>	3	Linksys	
bostonpublichealth	A	Y	09	59	_	1	61	Cisco	
linksys	H	N	06	1	F	0	0	Linksys	
default	Ĥ	N	06	18	F	1	1	D-Link	
1SUurce4M3d	- A	Ϋ́.	06	43	_	6	2	SMC	
Linksys	Ĥ	N	06	26		~ ~	° °	Linksys	
Tinksys	H	N	06	472	FU4	31	2	LINKSYS	
			_					(+) L	Jown

KISMET

Wireless Detection

Additional details for each network
 Data packets
 Weak packets

	dragorn@gir.lan.nerv-un.net:/home/dragorn 🗆 🗙
-Network List-(First Seen)	
-Network Details	(_)'Up
SSID : linksus	
Server : localbost:2501	
Mapuf : Lipkeye	
Madal : Upkpowp	
Matabad , 00.04.50.00.00.00	
FACTORY CONSTRUCTION	
Max Kate: 11.0	
First : Fri Nov 8 03:19:37 2002	
Latest : Fri Nov 8 03:19:38 2002	
U Llients : 2	
Type _ : Access Point (infrastructure)	
Channel : 6	
WEP : No	
Beacon : 100 (0.102400 sec)	
Packets : 81	
Data :8	
LLC : 73	
Crypt : 0	
Weak : O	
└─ Signal :	
👝 Quality : O (best O)	
Power : 0 (best 0)	i
Noise : 0 (best 0)	i
	(+) Down
Sorting client displau bu time first detected	
-Battery: AC charging 100% OhOmOs-	

Data Capture

Airodump-ng

- <u>http://www.aircrack-</u> ng.org/doku.php?id=airodump-ng
- Packet capturing of raw 802.11 frames
- Excellent tool for collecting WEP IVs
- Also supports the use of GPS receiver to log coordinates of detect access points
- Collected data can then be used by aircrack-ng to crack WEP keys

Data Capture

- Must collect enough IVs for aircrack-ng
- Relatively easy on high use networks such as enterprise users
- May take several days or weeks for a typical home network
 - Typically need 250,000 or more unique IVs for 64 bit keys
 Will need 1.5 million or more for 128 bit keys
- Aircrack-ng can be configured to run while capturing data

Data Capture

Sample capture

🛃 10.168.3.113 - PuTTY _ 🗆 × CH 7] [Elapsed: 9 mins] [2007-07-31 15:21 BSSID #Data, #/s CH MB ENC PWR Beacons CIPHER AUTH ESSID 00:06:25:B2:D4:19 1336 OPN linksys 50 246 48 WEP WEP 00:14:6C:B6:64:4A 53 1798 1 54. WEP WEP NETGEAR BSSID STATION PWR Lost Packets Probes 00:06:25:B2:D4:19 00:1A:70:7F:79:F2 39 0 56 linksys 64 78 littleharbor,default,Li (not associated) 00:16:6F:B1:F7:46 237

WEP Cracking

Aircrack-ng

- http://www.aircrack-ng.org/doku.php?id=aircrack-ng
- Can recover a WEP key once enough packets have been captured
- Uses two methods
 - PTW Pyshkin, Tews, Wainmann
 - If successful, requires few data packets
 - FMS/KoreK
 - Combines statistical and brute force attacks
- Can optionally use a dictionary attack
 - Dictionary attack is the method used for WPA / WPA2 PSK

WEP Cracking

Sample screenshot

1 = Keybyte

2 = Depth in current search 3 = Byte the Vs leaked	1 KBØ1234567	2 depth 0/ 1 1/ 2 0/ 3 0/ 1 0/ 1 0/ 1 0/ 1	byte(vote) AE(50) 11(5B(31) BD(7F(31) 74(3A(148) EC(03(140) 90(D0(69) 04(AF(124) D4(9B(168) 90(20) 71(18) F8(24) 54(20) EB(31) 4A(27) C8(29) C8(24) 72(20) 10(17) E6(17) 10(16) FB(15) 8F(24) 60(20) EE(22) F5(got 56668 12) 84(16) 35(13) 73(13) F9(14) E9(24) A1(18) 54(21) 11(3 IUs) 12) 68(15) CF(13) 86(12) 81(13) AD(20) 26(12) 3F(20) F1(12) 13) 12) 12) 12) 20) 12) 20)
4 = Votes ndicating this is	9 9 10	0/ 1 0/ 1 0/ 2 0/ 1 KES	98(168) 90(F6(157) EE(8D(82) 7B(A5(176) 44(FOUND! [AE:5	24) 72(24) 66(44) E2(30) 95(B:7F:3A:0	22) F5(20) EA(30) 11(22) 4E(]3:D0:AF:9	21) 11(18) DA(27) DE(21) 94(B:F6:8D:A	20) F1(18) E0(23) A4(21) 4D(5:E2:C7]	200 180 200 190

correct

War Driving

- Kismet with GPS and high-gain antenna
- Supports "gpsmap" command for mapping detected APs to GPS maps
- Web sites exist where you can upload war driving data to area maps
 - http://www.wigle.net/

War Driving

Sample map from NCSU campus

- Data is leaked from unencrypted wireless connections
- Doesn't require a "man-in-the-middle" attack
- Sniff wireless packets to collect cookies
- Tweak Firefox with the collected specific cookies
- Visit the website and impersonate the user

Allows the attacker to assume a user's authenticated session without obtaining the username and password

- Gmail
- Blackboard

User is unaware that anything has happened

Ferret

- Collect packets from wireless data seepage
- Passive attack
- Undetectable

Hamster

Windows

 executable that
 will provide
 cookies
 collected by
 Ferret through
 a web interface

Preventative Measures

- Don't use WEP!
- WPA / WPA2 w/ strong keys (64 random HEX)
- Don't use wireless AP default settings
 - Change the SSID
 - Don't broadcast the SSID
 - Doesn't provide security, but prevents casual users from finding your network
 - Disable remote administration
 - Require encrypted access (HTTPS)
 - MAC filtering can be spoofed, but takes more effort
 - Use a VPN when connected to public wireless APs

Demo / Questions

