
Neat Features of Vim

Davis Claiborne

NCSU LUG

October 24, 2018

1



Why Vim?

• Large number of users means virtually any plug-in or theme
you want has already been developed

• Vs. IDEs:

• Many plugins exist for Vim to mimic IDE features 1

• Keyboard-centric design means you can be faster with it

• Vs. Other terminal editors:

• Lightweight and configurable
• Modal editing allows for easier, more logical keyboard controls
• Vim is ubiquitous
• No Emacs Pinky :) [?]

1 E.g. UltiSnips, fugitive, etc.
2



Why Not Vim?

• Vs. IDEs:

• Requires significant tinkering to get just right
• Much higher learning curve

• Vs. Other terminal editors:

• Vimscript stinks
• Not a one-stop-shop

3



Indenting an Entire File

Formats using specified file indenting method

Format the entire file by typing gg=G in normal mode

More generally, :<start>,<end> = formats the lines from
<start> to <end>

Format visual selection by typing = on the range

Works for most file types (not Python)

See ‘:help =’ for more

4



Text Objects

Allows you to select regions based on syntax

• ip: inner paragraph 2

• ap: a paragraph

• i’: inner single quotes (text contained within single quotes)

• it: text within HTML tags

See :help text-objects for more

2 ‘Paragraphs’ are defined by blank lines
5



Ranges

Allow you to specify commands for only specific parts of file

:5,10w temp.txt writes lines 5-10 to a new file called temp.txt

’<,’> represent the start and end of a visual selection and are
automatically put in the status line when working with visual
selections

See :help range for more

6



Offsetting Ranges

Ranges can be offset by adding an amount to the end

This can be useful when you want to do some operation before or
after a pattern

E.g. /pattern/+1 will bring you to one line after the occurrence
of pattern, or /pattern/-1 will bring you one line before

See :help range for more

7



Visual Block Mode

Allows you to select blocks of text

Useful for working with blocks of text that span multiple lines, but
don’t include parts of the entire line.

See :help blockwise-visual for more

8



Formatting with External Programs

You can use ! to ‘filter,’ or read, external programs

To insert the current date, run :read !date

To format columns, run column -t -s $‘\t’ on a range

To sort, text, run sort -k <column>

Format text to a fixed with: !fmt -s -w 80

See :help filter for more

9



Global Command

Performs an action for a given command

E.g. :g/text/d deletes every line with the word ‘text’

General pattern is :g/pattern/command, where command is a
visual-mode command, unless specified with normal

E.g. :g/text/normal dw deletes the first word on every line

:v/pattern/command (or :g!) performs command on all lines
that don’t match pattern

See :help global for more

10



Insert Mode Completion

Allows for automatic completion

• Entire lines: <C-x><C-l> 3

• Keywords in current file: <C-x><C-n>

• Thesaurus: <C-x><C-t>

• Spelling <C-x>s 4 5

• Keywords in current and included files: <C-x><C-i>

• File names: <C-x><C-f>

See :help ins-completion for more

3 <C-x> represents pressing “Ctrl” and “x” at the same time
4 spell must be enabled
5 Not <C-s>; in terminal Vim that suspends; use <C-q> to resume

11



Digraphs

Insert digraph characters (Ö, ı̂, o, ...) easily

While in insert mode, press <C-k>, then the character and modifier

E.g. <C-k>O: creates Ö; <C-k>i> creates ı̂

You can even define your own digraphs

E.g. running :digraph ps 968 allows me to type <C-k>ps 968

and insert the Greek character psi

See :help digraphs for more

12



Marks

Marks are useful for quickly navigating between sections of text

Create a mark with m<letter>, where <letter> is any letter

• Lower-case letters are valid only for one file

• Upper-case letters are valid for multiple files

Jump to the start of the line where the mark was made with
’<letter> (single quote)

Jump to the exact location of the mark with ‘<letter> (backtick)

Jump between you last jumped from with ’’ (double single quote)

Plugins exist for visualizing marks more easily, or you can list all
current marks with :marks

See :help mark for more
13



Registers

Registers are used for storing text

The clipboard register is "+, so you can copy text to your clipboard
with "+y<motion>

In insert mode, you can paste from your clipboard with <C-r>+

Other basic registers rules:

• Lower-case registers are “basic” registers
• Upper-case registers are appended to lower-case
• Numbered registers 0-9 are used internally by Vim
• . register contains the last inserted text
• % register contains the name of the current file

Run :registers to see the current registers

For more, see :help registers
14



Recording Motions

Recordings are used for motions that will be repeated many times

Create a recording with q<char>, where <char> is any character
that represents a register

Execute a recording with @<char> (can use a count to perform it
multiple time)

Because recordings are stored in registers, you can append to
recordings

See :help recording for more

15



Folds

Folds can be used to hide regions of text; fold method changes
how folds are interpreted

Use set foldmethod=marker to specify folding regions with {{{
and }}} along with an optional name and indent-level

Other fold method options:

• manual
• indent
• expr
• marker
• syntax
• diff

Use zf to create a fold 6

See :help folds for more

6 Fold method must be manual or marker 16



Undo Tree

Vim contains powerful undo capabilities

Vim helps prevent losing work with “undo trees:”

• Actions are stored as points on a tree
• Undoing then performing a new action creates a new,

independent branch

View tree with :undolist

Cycle through undos with g- and g+

Undos can be persistent across sessions with an undofile (see
:help undo-persistence for more)

Plugins exist to allow easier visualization of undo tree [?]

See :help undo-tree for more
17



Buffers, Windows, and Tabs

According to the Vim manual: [?]

A buffer is the in-memory text of a file.
A window is a viewport on a buffer.
A tab page is a collection of windows.

Buffers don’t necessarily have to be visible

You can have multiple windows viewing a single buffer

18



Navigating Buffers, Windows, and Tabs

Buffers:

• Use command :buffers or :ls to view list of buffers
• Use command :buffer <name> to switch window’s buffer
• Use <C-^> to rapidly switch window between last two buffers

Windows:

• Switch active window: <C-w> and h, j, k, or l
• Alternate active window: <C-w><C-w>

• Move windows: <C-w> and <S-h>, <S-j>, <S-k>, or <S-l> 7

Tabs:

• Use command :tabs to view list of tabs
• Switch tabs with :tabnext

Save your current session with :mksession <name> , then load it
with :source <name> or vim -S <name>

See :help windows for more

7 <S-h> represents pressing “shift” and “h” at the same time 19



Miscsellaneous

Use gf to edit the filename under the cursor, or gF to edit the file
at a specific line number if it’s included

Use ]s to jump to the next spelling mistake, [s for the previous,
or z= on top of a word to bring up suggested words

Run vim with the -d flag to diff files in Vim

Tired of reaching for the escape key? inoremap jk <ESC>

Want your command line to be vim-like? set editing-mode vi

Vim has a built-in file browser: vim <dir>

Vim can edit and create encrypted files: vim -x

20



References I

[1] Emacs Pinky https://en.wikipedia.org/wiki/Emacs#Emacs_pinky

[2] Vim Documentation: :help toc or
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

[3] Undotree https://github.com/mbbill/undotree

21

https://en.wikipedia.org/wiki/Emacs#Emacs_pinky
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
https://github.com/mbbill/undotree

