Neat Features of Vim

Davis Claiborne

NCSU LUG

October 24, 2018

Linux Users Group
at NC State University



Why Vim?

e Large number of users means virtually any plug-in or theme
you want has already been developed

e Vs. IDEs:

e Many plugins exist for Vim to mimic IDE features !
e Keyboard-centric design means you can be faster with it

e Vs. Other terminal editors:

Lightweight and configurable

Modal editing allows for easier, more logical keyboard controls
Vim is ubiquitous

No Emacs Pinky :) [

L E.g. UltiSnips, fugitive, etc.



Why Not Vim?

e Vs. IDEs:
e Requires significant tinkering to get just right
e Much higher learning curve

Classical learning
curves for some
common editors

Yisual Studio vi emacs

e Vs. Other terminal editors:

e Vimscript stinks
e Not a one-stop-shop



Indenting an Entire File

Formats using specified file indenting method
Format the entire file by typing gg=G in normal mode

More generally, : <start>, <end>= formats the lines from
<start> to <end>

Format visual selection by typing = on the range
Works for most file types (not Python)

See ‘:help =" for more



Text Objects

Allows you to select regions based on syntax

e ip: inner paragraph 2
e ap: a paragraph
e i’: inner single quotes (text contained within single quotes)

e it: text within HTML tags

See :help text-objects for more

2 ‘Paragraphs’ are defined by blank lines



Ranges

Allow you to specify commands for only specific parts of file

:5,10w temp.txt writes lines 5-10 to a new file called temp.txt

’<,?> represent the start and end of a visual selection and are
automatically put in the status line when working with visual

selections

See :help range for more



Offsetting Ranges

Ranges can be offset by adding an amount to the end

This can be useful when you want to do some operation before or
after a pattern

E.g. /pattern/+1 will bring you to one line after the occurrence
of pattern, or /pattern/-1 will bring you one line before

See :help range for more



Visual Block Mode

Allows you to select blocks of text

Useful for working with blocks of text that span multiple lines, but
don't include parts of the entire line.

See :help blockwise-visual for more



Formatting with External Programs

You can use ! to ‘filter,” or read, external programs

To insert the current date, run :read !date

To format columns, run column -t -s $‘\t’ on a range
To sort, text, run sort -k <column>

Format text to a fixed with: 'fmt -s -w 80

See :help filter for more



Global Command

Performs an action for a given command
E.g. :g/text/d deletes every line with the word ‘text’

General pattern is :g/pattern/command, where command is a
visual-mode command, unless specified with normal

E.g. :g/text/normal dw deletes the first word on every line

:v/pattern/command (or :g!) performs command on all lines
that don’t match pattern

See :help global for more

10



Insert Mode Completion

Allows for automatic completion

e Entire lines: <C-x><C-1> 3

Keywords in current file: <C-x><C-n>

Thesaurus: <C-x><C-t>
45

Spelling <C-x>s

Keywords in current and included files: <C-x><C-i>

File names: <C-x><C-f>

See :help ins-completion for more

a_n

3 <C-x> represents pressing “Ctrl” and “x" at the same time
* spell must be enabled

> Not <C-s>; in terminal Vim that suspends; use <C-g> to resume
11



Digraphs

Insert digraph characters (O, 1, ©, ...) easily

While in insert mode, press <C-k>, then the character and modifier
E.g. <C-k>0: creates O <C-k>i> creates 1
You can even define your own digraphs

E.g. running :digraph ps 968 allows me to type <C-k>ps 968
and insert the Greek character psi

See :help digraphs for more

12



Marks

Marks are useful for quickly navigating between sections of text

Create a mark with m<letter>, where <letter> is any letter

e Lower-case letters are valid only for one file

e Upper-case letters are valid for multiple files

Jump to the start of the line where the mark was made with
’<letter> (single quote)

Jump to the exact location of the mark with ‘<letter> (backtick)
Jump between you last jumped from with *’ (double single quote)

Plugins exist for visualizing marks more easily, or you can list all
current marks with :marks

See :help mark for more
13



Registers

Registers are used for storing text

The clipboard register is "+, so you can copy text to your clipboard
with "+y<motion>

In insert mode, you can paste from your clipboard with <C-r>+

Other basic registers rules:
e Lower-case registers are “basic” registers
e Upper-case registers are appended to lower-case
e Numbered registers 0-9 are used internally by Vim
e . register contains the last inserted text
e % register contains the name of the current file

Run :registers to see the current registers

For more, see :help registers
14



Recording Motions

Recordings are used for motions that will be repeated many times

Create a recording with g<char>, where <char> is any character
that represents a register

Execute a recording with @<char> (can use a count to perform it
multiple time)

Because recordings are stored in registers, you can append to
recordings

See :help recording for more

15



Folds

Folds can be used to hide regions of text; fold method changes
how folds are interpreted

Use set foldmethod=marker to specify folding regions with {{{
and }}} along with an optional name and indent-level

Other fold method options:

e manual
e indent
e expr
e marker
® syntax
o diff

Use zf to create a fold ©

See :help folds for more

5 Fold method must be manual or marker 16



Undo Tree

Vim contains powerful undo capabilities

Vim helps prevent losing work with “undo trees:”

e Actions are stored as points on a tree
e Undoing then performing a new action creates a new,
independent branch

View tree with :undolist
Cycle through undos with g- and g+

Undos can be persistent across sessions with an undofile (see
:help undo-persistence for more)

Plugins exist to allow easier visualization of undo tree [

See :help undo-tree for more

17



Buffers, Windows, and Tabs

According to the Vim manual: [

A buffer is the in-memory text of a file.
A window is a viewport on a buftfer.
A tab page is a collection of windows.

Buffers don't necessarily have to be visible

You can have multiple windows viewing a single buffer

18



Navigating Buffers, Windows, and Tabs

Buffers:

e Use command :buffers or :1s to view list of buffers

e Use command :buffer <name> to switch window's buffer

e Use <C-"> to rapidly switch window between last two buffers
Windows:

e Switch active window: <C-w> and h, j, k, or 1

e Alternate active window: <C-w><C-w>

e Move windows: <C-w> and <S-h>, <S-3j>, <S-k>, or <S-1> /
Tabs:

e Use command :tabs to view list of tabs

e Switch tabs with :tabnext

Save your current session with :mksession <name>, then load it
with :source <name> or vim -S <name>

See :help windows for more

7 <S-h> represents pressing “shift” and “h” at the same time 19



Miscsellaneous

Use gf to edit the filename under the cursor, or gF to edit the file
at a specific line number if it's included

Use ]s to jump to the next spelling mistake, [s for the previous,
or z= on top of a word to bring up suggested words

Run vim with the -d flag to diff files in Vim

Tired of reaching for the escape key? inoremap jk <ESC>
Want your command line to be vim-like? set editing-mode vi
Vim has a built-in file browser: vim <dzr>

Vim can edit and create encrypted files: vim -x

20



(1]
2]

(3]

References |

Emacs Pinky https://en.wikipedia.org/wiki/Emacs#Emacs_pinky

Vim Documentation: :help toc or
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

Undotree https://github.com/mbbill/undotree

21


https://en.wikipedia.org/wiki/Emacs#Emacs_pinky
http://vimdoc.sourceforge.net/htmldoc/usr_toc.html
https://github.com/mbbill/undotree

