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(What the hell is a monad?)



  

● Program is made of several steps the 
computer is to carry out

● You tell the computer what to do 
(imperative)

● What you’re probably used to
– Python, Java, C, JavaScript, Lua

Procedural Programming 2



  

● Program is made of functions that map 
values onto other values

● You tell the computer what you want 
(declarative)
– Lisp, Erlang, Elixir, OCaml, F#, Scala

Functional Programming 3



  

● You have to give up lots of things you’re used 
to
– Mutation (x = 1; x =2;)
– Looping (use recursion instead)
– Side effects (IO, globals and state)

● (not really, but it’s kind of funky)

Haskell is purely functional 4



  

● Being used more in mainstream languages
● Often results in code that is shorter and easy 

to read
● Allows you to do complex operations very easy
● Clout

Why? 5



  

Diving in 6



  

● Haskell has a powerful type system that’s clear to 
read

● mult :: Int -> Int -> Int
– Takes two ints, returns an int

● multBy :: Int -> (Int -> Int)
– Takes an int, returns a function which takes an int and 

returns an int

Types 7



  

● reverseList :: [a] -> [a]
– Takes a list of anything, and returns a list of anything

● allSame :: Eq a => [a] -> Bool
– Takes a list of anything that is an instance of Eq, returns 

a boolean
– Being an instance of Eq means two of a type can be 

equal (==) or not equal (/=)

Types 8



  

● In Haskell, functions can only take on parameter
● But, functions can return functions
● Similar to idea of closures in procedural languages
● You can still use them as though they’re taking 

multiple arguments, without having to worry about 
currying behind the scenes

Currying 9



  

● Allows for partial application

Currying 10



  

● To Haskell, parentheses in type definitions do not 
matter unless taking functions as parameters
– mult :: Int -> Int -> Int
– multBy :: Int -> (Int -> Int)
– Both of these mean the exact same thing

● But they usually help a reader better understand 
what your function is supposed to mean

Currying 11



  

● Haskell offers many ways to give and accept 
parameters

● Regular
● Guards
● Pattern matching

Function parameters 12



  

● Think of splitting an if-else block into 
separate functions

Guarded parameters 13



  

● Possibilities are 
attempted, going down

● If none match, error is 
thrown
– A side effect (gross)

Pattern matching 14



  

● Underscore discards argument

Pattern matching, multiple arguments 15



  

● (x:xs) pattern puts first element in x, rest in xs

Pattern matching, lists 16



  

● Lists and recursion are your replacement for loops
● All elements are of same type
● Lists are constructed one element at a time, with :
● Lists can be concatenated with ++
● Random access with [1,2,3,4] !! 0

Lists 17



  

List functions 18



  

● Generate a new list from an existing one very 
easily

List comprehensions 19



  

Advanced list functions 20



  

● Quick and dirty functions, ideal for map and 
filter

Lambda functions 21



  

● (.) operator works similarly to function composition from 
math

Function composition 22



  

● Many recursive functions follow a common 
pattern:
– Base case
– Operation that takes next element and 

accumulation

Folding 23



  

● When applied to [1..4]:
– (1 + (2 + (3 + (4 + 0))))
– (1 + (2 + (3 + (4))))
– (1 + (2 + (7)))
– (1 + (9))
– (10)  10→

foldlr 24



  

● Order of ops reversed (folds left)
● 1 variant uses first element as base case

foldl1 25



  

● Structuring your own data is easy, and there 
are several tools for you
– Types
– Data
– Typeclasses and Newtypes

Defining your data 26



  

● Just an alias for an existing type, good for 
readability

Types 27



  

● Similar to a struct in C, with some new tricks

Data 28



  

Recursive data 29



  

● Defines a set of functions for a given type

Typeclasses 30



  

● Similar to data, but only 
allows for one constructor 
and field

● Used to wipe typeclass 
definitions for an existing 
type

● Also comes with some 
performance benefits

Newtypes 31



  

● Functors 😀
● Applicatives 😐

The hard stuff 32



  

● Monads

The hard stuff 33



  

● Easy way to model a computation that may 
fail

The Maybe type 34



  

● With a functor, we can map a function onto 
its inner value(s)

Maybe as a functor 35



  

● map is fmap for lists

Lists as a functor 36



  

● Functors are cool, but they only work on 
functions with one argument

● Applicatives solve this problem
● They allow you to wrap a function within a 

type (pure), and then feed it parameters

Applicatives 37



  

Maybe as an applicative 38



  

● We have a process that could fail at any step
● Let’s use Maybe
● Each step needs to be able to pass on failure 

(Nothing) from the step before

Modeling a chain of computation 39



  

● Could do it all in one function like this, but I’d 
rather not

Modeling a chain of computation 40



  

● Can we use functors?
– No, because that only applies the function to the inner 

value. If the function fails, we’d still get an exception, or at 
best, Just Nothing

● What about applicatives?
– No, because we have to start with a function and feed 

values into it. We can’t chain the output of one function to 
the output of another

Modeling a chain of computation 41



  

● We need to be able to:
– Chain together as many functions as we want
– Be able to propate failure to the end of the chain, from anywhere in the 

chain
● Each function needs to be able to return Nothing
● But we also want our functions to be as generic as possible, so their parameters 

shouldn’t be wrapped in Maybe
● Their types should be a -> Just a
● But now, how do we pass output (Just a) to the next function (which expects an 

a)?

Modeling a chain of computation 42



  

● Let’s make an 
intermediary 
function to handle it

Modeling a chain of computation 43



  

● This is really handy, someone should name 
this!

● monad
● Oh
● But hey, that wasn’t so bad, was it?

Monads 44



  

● In practice, bind is replaced with >>=
● And there are many different monads, 

Maybe is just one of them
● But they all follow a similar idea, of being 

able to pass failure, or really any context, 
down a pipeline

Monads 45



  

● Haskell functions are pure, they have no side 
effects

● … but every way we could interact with a 
program is a side effect

● So is Haskell actually pure?

Doin’ stuff 46



  

● Every Haskell function is pure
● So to get around it, we can make a type 

called IO, which is a side effect
● Functions can now return side effects, but 

the function itself is not what causes a side 
effect to happen

Doin’ stuff 47



  

● To execute a side effect, set main equal to it

Doin’ stuff 48



  

● The flow of your program can be 
represented purely, so you’re not really 
breaking any “purely functional” rules

● Haskell just executes the IO action you’ve 
given it, and uses the rules you’ve defined in 
your functions

Doin’ stuff 49



  

● You’ll probably 
want to do 
more than one 
or two things 
in your main 
action

● This sucks

Doin’ lots of stuff 50



  

● Haskell offers some 
more sugar

● This translates 
straight to what 
was seen earlier, 
just easier to read

● In fact, do syntax 
works on any 
monad, not just IO

(do)in’ stuff 51



  

● Since mutability is not supported, a function will always 
return the same output for the same input
– Don’t worry about IO for now

● Because of this, an expression will always evaluate the same
– Also makes parallelization/concurrency very easy

● Haskell is lazy: it doesn’t evaluate an expression until it 
absolutely needs to

Laziness 52



  

Laziness 53



  

● This has performance benefits (sometimes), 
since unnecessary computation isn’t performed
– Also makes debugging harder :(

● But it also allows for one very cool trick that is 
impossible (or at least much less natural) in a 
non-lazy language

Laziness 54



  

Laziness: Infinite data 55



  

Laziness and IO 56



  

● Glasgow Haskell Compiler (GHC)
– The GCC of Haskell
– Can also interpret, run a REPL

● Hackage: Package index
● Stack: Build system, package manager
● Cabal: Older build system

– Still updated, but falling out of favor for Stack

● Haddock: Documentation generator
– Like JavaDoc, Doxygen

The Haskell Ecosystem 57



  

● Learn You a Haskell For Great Good!
– Miran Lipovaca
– Available for free online

● Programming in Haskell
– Graham Hutton (of Computerphile fame)

● Real World Haskell
– O’Reilly

● Tsoding on YouTube

Further resources 58



  

Some examples were taken from LYAHFGG, 
Programming in Haskell, and the Haskell 
website.

carbon.now.sh was used to generate code 
snippets.
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