

Functional Programming in
William Harrell 09/14/21 LUG @ NC State

(What the hell is a monad?)

● Program is made of several steps the
computer is to carry out

● You tell the computer what to do
(imperative)

● What you’re probably used to
– Python, Java, C, JavaScript, Lua

Procedural Programming 2

● Program is made of functions that map
values onto other values

● You tell the computer what you want
(declarative)
– Lisp, Erlang, Elixir, OCaml, F#, Scala

Functional Programming 3

● You have to give up lots of things you’re used
to
– Mutation (x = 1; x =2;)
– Looping (use recursion instead)
– Side effects (IO, globals and state)

● (not really, but it’s kind of funky)

Haskell is purely functional 4

● Being used more in mainstream languages
● Often results in code that is shorter and easy

to read
● Allows you to do complex operations very easy
● Clout

Why? 5

Diving in 6

● Haskell has a powerful type system that’s clear to
read

● mult :: Int -> Int -> Int
– Takes two ints, returns an int

● multBy :: Int -> (Int -> Int)
– Takes an int, returns a function which takes an int and

returns an int

Types 7

● reverseList :: [a] -> [a]
– Takes a list of anything, and returns a list of anything

● allSame :: Eq a => [a] -> Bool
– Takes a list of anything that is an instance of Eq, returns

a boolean
– Being an instance of Eq means two of a type can be

equal (==) or not equal (/=)

Types 8

● In Haskell, functions can only take on parameter
● But, functions can return functions
● Similar to idea of closures in procedural languages
● You can still use them as though they’re taking

multiple arguments, without having to worry about
currying behind the scenes

Currying 9

● Allows for partial application

Currying 10

● To Haskell, parentheses in type definitions do not
matter unless taking functions as parameters
– mult :: Int -> Int -> Int
– multBy :: Int -> (Int -> Int)
– Both of these mean the exact same thing

● But they usually help a reader better understand
what your function is supposed to mean

Currying 11

● Haskell offers many ways to give and accept
parameters

● Regular
● Guards
● Pattern matching

Function parameters 12

● Think of splitting an if-else block into
separate functions

Guarded parameters 13

● Possibilities are
attempted, going down

● If none match, error is
thrown
– A side effect (gross)

Pattern matching 14

● Underscore discards argument

Pattern matching, multiple arguments 15

● (x:xs) pattern puts first element in x, rest in xs

Pattern matching, lists 16

● Lists and recursion are your replacement for loops
● All elements are of same type
● Lists are constructed one element at a time, with :
● Lists can be concatenated with ++
● Random access with [1,2,3,4] !! 0

Lists 17

List functions 18

● Generate a new list from an existing one very
easily

List comprehensions 19

Advanced list functions 20

● Quick and dirty functions, ideal for map and
filter

Lambda functions 21

● (.) operator works similarly to function composition from
math

Function composition 22

● Many recursive functions follow a common
pattern:
– Base case
– Operation that takes next element and

accumulation

Folding 23

● When applied to [1..4]:
– (1 + (2 + (3 + (4 + 0))))
– (1 + (2 + (3 + (4))))
– (1 + (2 + (7)))
– (1 + (9))
– (10) 10→

foldlr 24

● Order of ops reversed (folds left)
● 1 variant uses first element as base case

foldl1 25

● Structuring your own data is easy, and there
are several tools for you
– Types
– Data
– Typeclasses and Newtypes

Defining your data 26

● Just an alias for an existing type, good for
readability

Types 27

● Similar to a struct in C, with some new tricks

Data 28

Recursive data 29

● Defines a set of functions for a given type

Typeclasses 30

● Similar to data, but only
allows for one constructor
and field

● Used to wipe typeclass
definitions for an existing
type

● Also comes with some
performance benefits

Newtypes 31

● Functors 😀
● Applicatives 😐

The hard stuff 32

● Monads

The hard stuff 33

● Easy way to model a computation that may
fail

The Maybe type 34

● With a functor, we can map a function onto
its inner value(s)

Maybe as a functor 35

● map is fmap for lists

Lists as a functor 36

● Functors are cool, but they only work on
functions with one argument

● Applicatives solve this problem
● They allow you to wrap a function within a

type (pure), and then feed it parameters

Applicatives 37

Maybe as an applicative 38

● We have a process that could fail at any step
● Let’s use Maybe
● Each step needs to be able to pass on failure

(Nothing) from the step before

Modeling a chain of computation 39

● Could do it all in one function like this, but I’d
rather not

Modeling a chain of computation 40

● Can we use functors?
– No, because that only applies the function to the inner

value. If the function fails, we’d still get an exception, or at
best, Just Nothing

● What about applicatives?
– No, because we have to start with a function and feed

values into it. We can’t chain the output of one function to
the output of another

Modeling a chain of computation 41

● We need to be able to:
– Chain together as many functions as we want
– Be able to propate failure to the end of the chain, from anywhere in the

chain
● Each function needs to be able to return Nothing
● But we also want our functions to be as generic as possible, so their parameters

shouldn’t be wrapped in Maybe
● Their types should be a -> Just a
● But now, how do we pass output (Just a) to the next function (which expects an

a)?

Modeling a chain of computation 42

● Let’s make an
intermediary
function to handle it

Modeling a chain of computation 43

● This is really handy, someone should name
this!

● monad
● Oh
● But hey, that wasn’t so bad, was it?

Monads 44

● In practice, bind is replaced with >>=
● And there are many different monads,

Maybe is just one of them
● But they all follow a similar idea, of being

able to pass failure, or really any context,
down a pipeline

Monads 45

● Haskell functions are pure, they have no side
effects

● … but every way we could interact with a
program is a side effect

● So is Haskell actually pure?

Doin’ stuff 46

● Every Haskell function is pure
● So to get around it, we can make a type

called IO, which is a side effect
● Functions can now return side effects, but

the function itself is not what causes a side
effect to happen

Doin’ stuff 47

● To execute a side effect, set main equal to it

Doin’ stuff 48

● The flow of your program can be
represented purely, so you’re not really
breaking any “purely functional” rules

● Haskell just executes the IO action you’ve
given it, and uses the rules you’ve defined in
your functions

Doin’ stuff 49

● You’ll probably
want to do
more than one
or two things
in your main
action

● This sucks

Doin’ lots of stuff 50

● Haskell offers some
more sugar

● This translates
straight to what
was seen earlier,
just easier to read

● In fact, do syntax
works on any
monad, not just IO

(do)in’ stuff 51

● Since mutability is not supported, a function will always
return the same output for the same input
– Don’t worry about IO for now

● Because of this, an expression will always evaluate the same
– Also makes parallelization/concurrency very easy

● Haskell is lazy: it doesn’t evaluate an expression until it
absolutely needs to

Laziness 52

Laziness 53

● This has performance benefits (sometimes),
since unnecessary computation isn’t performed
– Also makes debugging harder :(

● But it also allows for one very cool trick that is
impossible (or at least much less natural) in a
non-lazy language

Laziness 54

Laziness: Infinite data 55

Laziness and IO 56

● Glasgow Haskell Compiler (GHC)
– The GCC of Haskell
– Can also interpret, run a REPL

● Hackage: Package index
● Stack: Build system, package manager
● Cabal: Older build system

– Still updated, but falling out of favor for Stack

● Haddock: Documentation generator
– Like JavaDoc, Doxygen

The Haskell Ecosystem 57

● Learn You a Haskell For Great Good!
– Miran Lipovaca
– Available for free online

● Programming in Haskell
– Graham Hutton (of Computerphile fame)

● Real World Haskell
– O’Reilly

● Tsoding on YouTube

Further resources 58

Some examples were taken from LYAHFGG,
Programming in Haskell, and the Haskell
website.

carbon.now.sh was used to generate code
snippets.

Acknowledgements 59

60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

